Plantilla:Representación de funciones polinómicas (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 16:19 30 mar 2020
Coordinador (Discusión | contribuciones)

← Ir a diferencia anterior
Revisión de 09:55 1 abr 2020
Coordinador (Discusión | contribuciones)

Ir a siguiente diferencia →
Línea 76: Línea 76:
}} }}
{{Video_enlace_virtual {{Video_enlace_virtual
-|titulo1=Ejercicio 4+|titulo1=Ejercicio 4a
|duracion=8'55" |duracion=8'55"
|sinopsis=Estudio del crecimiento, puntos extremos y concavidad* de la función polinómica <math>f(x)=(x-1)^2</math>. Representación gráfica. |sinopsis=Estudio del crecimiento, puntos extremos y concavidad* de la función polinómica <math>f(x)=(x-1)^2</math>. Representación gráfica.
Línea 84: Línea 84:
}} }}
{{Video_enlace_virtual {{Video_enlace_virtual
-|titulo1=Ejercicio 5+|titulo1=Ejercicio 4b
|duracion=16'02" |duracion=16'02"
|sinopsis=Estudio del crecimiento, puntos extremos y concavidad* de la función polinómica <math>f(x)=x^4+8x^3-2</math>. Representación gráfica. |sinopsis=Estudio del crecimiento, puntos extremos y concavidad* de la función polinómica <math>f(x)=x^4+8x^3-2</math>. Representación gráfica.
Línea 92: Línea 92:
}} }}
{{Video_enlace_virtual {{Video_enlace_virtual
-|titulo1=Ejercicio 6+|titulo1=Ejercicio 4c
|duracion=18'20" |duracion=18'20"
|sinopsis=Estudio del crecimiento, puntos extremos y concavidad* de la función polinómica <math>f(x)=\cfrac{1}{12}x^4-\cfrac{1}{6}x^3+\cfrac{1}{6}</math>. Representación gráfica. |sinopsis=Estudio del crecimiento, puntos extremos y concavidad* de la función polinómica <math>f(x)=\cfrac{1}{12}x^4-\cfrac{1}{6}x^3+\cfrac{1}{6}</math>. Representación gráfica.
Línea 98: Línea 98:
(*) Para ampliar. (*) Para ampliar.
|url1=https://www.youtube.com/watch?v=2MgUEATf72Q&index=1&list=PLo7_lpX1yruNa6J5Yj7viqYmv-qQBgRoQ |url1=https://www.youtube.com/watch?v=2MgUEATf72Q&index=1&list=PLo7_lpX1yruNa6J5Yj7viqYmv-qQBgRoQ
 +}}
 +{{Video_enlace_matesandres
 +|titulo1=Ejercicio 5a
 +|duracion=12'19"
 +|sinopsis=Estudio del crecimiento, puntos extremos y concavidad* de la función polinómica <math>f(x)=x^3-6x^2+9x</math>. Representación gráfica.
 +
 +(*) Para ampliar.
 +|url1=https://youtu.be/-OwSv1HnTTQ?list=PLNQqRPuLTic-0-vxURmFwCNC2wlp1a_Sb
 +}}
 +{{Video_enlace_matesandres
 +|titulo1=Ejercicio 5b
 +|duracion=12'35"
 +|sinopsis=Estudio del crecimiento, puntos extremos y concavidad* de la función polinómica <math>f(x)=x^4-2x^3</math>. Representación gráfica.
 +
 +(*) Para ampliar.
 +|url1=https://youtu.be/82kLvBbd6Ws?list=PLNQqRPuLTic-0-vxURmFwCNC2wlp1a_Sb
}} }}
}} }}

Revisión de 09:55 1 abr 2020

ejercicio

Procedimiento


En el estudio y representación gráfica de una función polinómica, f(x),tendremos que determinar los siguientes apartados:

  1. Dominio: \mathbb{R}.
  2. Puntos de corte: Los puntos de corte con el eje X se obtienen resolviendo la ecuación f(x)=0, para lo que tendremos que resolver una ecuación polinómica usando las técnicas vistas en temas anteriores. El punto de corte con el eje Y se obtiene calculando f(0).
  3. Signo de f(x): para el estudio del signo usaremos sólo los puntos de corte ya que una función polinómica no tiene discontinuidades.
  4. Puntos singulares de f(x) que se obtienen resolviendo la ecuación f '(x)=0. Por tanto, tendremos que resolver otra ecuación polinómica.
  5. Intervalos de crecimiento y decrecimiento de f(x): a partir de los puntos singulares y estudiando el signo de f '(x). Así podremos determinar los máximos y mínimos relativos de f(x).
  6. Asíntotas y ramas infinitas: Las funciones polinómicas no tienen ningún tipo de asíntotas. Tan sólo habrá que estudiar el límite cuando x tiende a +/- infinito.
  7. Simetrías: ver si f(x) es par o impar.

ejercicio

Ejercicios resueltos: Estudio y representación gráfica de funciones polinómicas


Estudia y representa:

a) y=x^3-3x^2+4\;.
b) y=3x^4+4x^3-36x^2+100\;.
c) y=-3x^4+4x^3\;.
Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda