Plantilla:Representación de funciones polinómicas (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 17:01 18 jun 2017
Coordinador (Discusión | contribuciones)

← Ir a diferencia anterior
Revisión actual
Coordinador (Discusión | contribuciones)

Línea 6: Línea 6:
#'''Signo''' de f(x): para el estudio del signo usaremos sólo los puntos de corte ya que una función polinómica no tiene discontinuidades. #'''Signo''' de f(x): para el estudio del signo usaremos sólo los puntos de corte ya que una función polinómica no tiene discontinuidades.
#'''Puntos singulares''' de f(x) que se obtienen resolviendo la ecuación f '(x)=0. Por tanto, tendremos que resolver otra ecuación polinómica. #'''Puntos singulares''' de f(x) que se obtienen resolviendo la ecuación f '(x)=0. Por tanto, tendremos que resolver otra ecuación polinómica.
-#'''Intervalos de crecimiento y decrecimiento''' de f(x): a partir de los puntos singulares y estudiando el signo de f '(x). Así podremos determinar los máximos y mínimos relativos de f(x).+#'''Intervalos de crecimiento y decrecimiento''' de f(x): a partir de los puntos singulares de f(x) y estudiando el signo de f '(x). Así podremos determinar los máximos y mínimos relativos de f(x).
 +#'''Concavidad*''' de f(x): a partir de los puntos singulares de f '(x) y estudiando el signo de f "(x). Es como estudiar el crecimiento de f '(x).
#'''Asíntotas y ramas infinitas''': Las funciones polinómicas no tienen ningún tipo de asíntotas. Tan sólo habrá que estudiar el límite cuando x tiende a +/- infinito. #'''Asíntotas y ramas infinitas''': Las funciones polinómicas no tienen ningún tipo de asíntotas. Tan sólo habrá que estudiar el límite cuando x tiende a +/- infinito.
#'''Simetrías''': ver si f(x) es par o impar. #'''Simetrías''': ver si f(x) es par o impar.
 +
 +(*) El estudio de concavidad se verá en 2º de bachillerato, aunque se verá como se hace en algún vídeo.
}} }}
{{p}} {{p}}
Línea 14: Línea 17:
|titulo=Estudio y representación gráfica de funciones polinómicas |titulo=Estudio y representación gráfica de funciones polinómicas
|enunciado= |enunciado=
 +{{Video_enlace_8cifras
 +|titulo1=Tutorial
 +|duracion=10'40"
 +|sinopsis=Estudio y representación gráfica de la función polinómica <math>f(x)=x^3+3x^2\;</math>
 +# Dominio
 +# Puntos de corte con los ejes.
 +# Crecimiento y puntos extremos.
 +# Ramas infinitas.
 +# Representación gráfica.
 +
 +|url1=https://youtu.be/-ePaP98G-EI
 +}}
 +----
{{Video_enlace_clasematicas {{Video_enlace_clasematicas
|titulo1=Estudio del dominio y la imagen |titulo1=Estudio del dominio y la imagen
Línea 37: Línea 53:
|url1=https://www.youtube.com/watch?v=34D4t7ZJzIA&list=PLZNmE9BEzVImx1PyuWcTPuA6KB6xxyLof&index=2 |url1=https://www.youtube.com/watch?v=34D4t7ZJzIA&list=PLZNmE9BEzVImx1PyuWcTPuA6KB6xxyLof&index=2
}} }}
 +----
{{Video_enlace_julioprofe {{Video_enlace_julioprofe
|titulo1=Ejercicio 1 (Ceros) |titulo1=Ejercicio 1 (Ceros)
Línea 47: Línea 64:
}} }}
{{Video_enlace_unicoos {{Video_enlace_unicoos
-|titulo1=Ejercicio 2 (Crecimiento y extremos)+|titulo1=Ejercicio 2
|duracion=9'54" |duracion=9'54"
-|sinopsis= Estudio del crecimiento y de los puntos extremos de <math>f(x)=2x^4-8x-3\;</math>+|sinopsis= Estudio del crecimiento, puntos extremos y concavidad* de <math>f(x)=2x^4-8x-3\;</math>
 +(*) Para ampliar
|url1=https://www.youtube.com/watch?v=5PnzLrfz0Dg&t=109s |url1=https://www.youtube.com/watch?v=5PnzLrfz0Dg&t=109s
}} }}
Línea 56: Línea 74:
|titulo1=Ejercicio 3 |titulo1=Ejercicio 3
|duracion=28'16" |duracion=28'16"
-|sinopsis=Estudio y representación gráfica de la función polinómica <math>f(x)=x^3-6x^2-15x+40\,</math>+|sinopsis=Estudio y representación gráfica de la función polinómica <math>f(x)=x^3-6x^2-15x+40\,</math>. Incluye estudio de la concavidad (para ampliar).
|url1=https://www.youtube.com/watch?v=Q73XxigqTP8 |url1=https://www.youtube.com/watch?v=Q73XxigqTP8
 +}}
 +{{Video_enlace_virtual
 +|titulo1=Ejercicio 4a
 +|duracion=8'55"
 +|sinopsis=Estudio del crecimiento, puntos extremos y concavidad* de la función polinómica <math>f(x)=(x-1)^2</math>. Representación gráfica.
 +
 +(*) Para ampliar.
 +|url1=https://www.youtube.com/watch?v=yQoqkMaLbRs&index=3&list=PLo7_lpX1yruNa6J5Yj7viqYmv-qQBgRoQ
 +}}
 +{{Video_enlace_virtual
 +|titulo1=Ejercicio 4b
 +|duracion=16'02"
 +|sinopsis=Estudio del crecimiento, puntos extremos y concavidad* de la función polinómica <math>f(x)=x^4+8x^3-2</math>. Representación gráfica.
 +
 +(*) Para ampliar.
 +|url1=https://www.youtube.com/watch?v=JK-uQjEqoxY&index=2&list=PLo7_lpX1yruNa6J5Yj7viqYmv-qQBgRoQ
 +}}
 +{{Video_enlace_virtual
 +|titulo1=Ejercicio 4c
 +|duracion=18'20"
 +|sinopsis=Estudio del crecimiento, puntos extremos y concavidad* de la función polinómica <math>f(x)=\cfrac{1}{12}x^4-\cfrac{1}{6}x^3+\cfrac{1}{6}</math>. Representación gráfica.
 +
 +(*) Para ampliar.
 +|url1=https://www.youtube.com/watch?v=2MgUEATf72Q&index=1&list=PLo7_lpX1yruNa6J5Yj7viqYmv-qQBgRoQ
 +}}
 +{{Video_enlace_matesandres
 +|titulo1=Ejercicio 5a
 +|duracion=12'19"
 +|sinopsis=Estudio del crecimiento, puntos extremos y concavidad* de la función polinómica <math>f(x)=x^3-6x^2+9x</math>. Representación gráfica.
 +
 +(*) Para ampliar.
 +|url1=https://youtu.be/-OwSv1HnTTQ?list=PLNQqRPuLTic-0-vxURmFwCNC2wlp1a_Sb
 +}}
 +{{Video_enlace_matesandres
 +|titulo1=Ejercicio 5b
 +|duracion=12'35"
 +|sinopsis=Estudio del crecimiento, puntos extremos y concavidad* de la función polinómica <math>f(x)=x^4-2x^3</math>. Representación gráfica.
 +
 +(*) Para ampliar.
 +|url1=https://youtu.be/82kLvBbd6Ws?list=PLNQqRPuLTic-0-vxURmFwCNC2wlp1a_Sb
}} }}
}} }}

Revisión actual

ejercicio

Procedimiento


En el estudio y representación gráfica de una función polinómica, f(x),tendremos que determinar los siguientes apartados:

  1. Dominio: \mathbb{R}.
  2. Puntos de corte: Los puntos de corte con el eje X se obtienen resolviendo la ecuación f(x)=0, para lo que tendremos que resolver una ecuación polinómica usando las técnicas vistas en temas anteriores. El punto de corte con el eje Y se obtiene calculando f(0).
  3. Signo de f(x): para el estudio del signo usaremos sólo los puntos de corte ya que una función polinómica no tiene discontinuidades.
  4. Puntos singulares de f(x) que se obtienen resolviendo la ecuación f '(x)=0. Por tanto, tendremos que resolver otra ecuación polinómica.
  5. Intervalos de crecimiento y decrecimiento de f(x): a partir de los puntos singulares de f(x) y estudiando el signo de f '(x). Así podremos determinar los máximos y mínimos relativos de f(x).
  6. Concavidad* de f(x): a partir de los puntos singulares de f '(x) y estudiando el signo de f "(x). Es como estudiar el crecimiento de f '(x).
  7. Asíntotas y ramas infinitas: Las funciones polinómicas no tienen ningún tipo de asíntotas. Tan sólo habrá que estudiar el límite cuando x tiende a +/- infinito.
  8. Simetrías: ver si f(x) es par o impar.

(*) El estudio de concavidad se verá en 2º de bachillerato, aunque se verá como se hace en algún vídeo.

ejercicio

Ejercicios resueltos: Estudio y representación gráfica de funciones polinómicas


Estudia y representa:

a) y=x^3-3x^2+4\;.
b) y=3x^4+4x^3-36x^2+100\;.
c) y=-3x^4+4x^3\;.
Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda