Vídeos de Matemáticas

De Wikipedia

(Diferencia entre revisiones)
Revisión de 13:09 10 dic 2007
Coordinador (Discusión | contribuciones)
(MÁS POR MENOS)
← Ir a diferencia anterior
Revisión de 13:25 10 dic 2007
Coordinador (Discusión | contribuciones)
(MÁS POR MENOS)
Ir a siguiente diferencia →
Línea 171: Línea 171:
|url1=http://maralboran.org/web_ma/videos/naturales/naturales.htm |url1=http://maralboran.org/web_ma/videos/naturales/naturales.htm
|titulo2=Acceso por red TIC |titulo2=Acceso por red TIC
-|url2=+|url2=http://c0/helvia/aula/archivos/repositorio/html/113/index.htm
|sinopsis=Los números que nos sirven para contar, los números naturales, uno de los más viejos inventos de la Humanidad. ¿Cómo serían nuestras vidas sin la existencia de estos |sinopsis=Los números que nos sirven para contar, los números naturales, uno de los más viejos inventos de la Humanidad. ¿Cómo serían nuestras vidas sin la existencia de estos
números?... Desde los pitagóricos, que los consideraron como el principio y la explicación de todo el Universo, hasta nuestros días estos números han ejercido un poderoso influjo sobre los matemáticos de todas las épocas. Uno de los campos que ha tenido en jaque a los grandes matemáticos es el de los números primos; una auténtica caja de sorpresas. Aún hoy, utilizando potentes ordenadores, no se han podido demostrar algunas de las conjeturas formuladas sobre estos números hace más de doscientos años. Veremos algunas de ellas y descubriremos una de las aplicaciones más extrañas de los números primos en la actualidad, su utilización en criptografía. números?... Desde los pitagóricos, que los consideraron como el principio y la explicación de todo el Universo, hasta nuestros días estos números han ejercido un poderoso influjo sobre los matemáticos de todas las épocas. Uno de los campos que ha tenido en jaque a los grandes matemáticos es el de los números primos; una auténtica caja de sorpresas. Aún hoy, utilizando potentes ordenadores, no se han podido demostrar algunas de las conjeturas formuladas sobre estos números hace más de doscientos años. Veremos algunas de ellas y descubriremos una de las aplicaciones más extrañas de los números primos en la actualidad, su utilización en criptografía.
Línea 181: Línea 181:
|url1=http://maralboran.org/web_ma/videos/fractales/fractales.htm |url1=http://maralboran.org/web_ma/videos/fractales/fractales.htm
|titulo2=Acceso por red TIC |titulo2=Acceso por red TIC
-|url2=+|url2=http://c0/helvia/aula/archivos/repositorio/html/114/index.htm
|sinopsis=El ordenador los ha puesto de moda. Y sin embargo ya eran conocidos a principios de siglo. Nos referimos a los fractales. Son los objetos matemáticos más atractivos, espectaculares y enigmáticos. A medio camino entre la linea y el plano, entre el plano y el espacio, rompen hasta con el concepto clásico de dimensión. Sus dimensiones no son números enteros, de ahí su extraño nombre. Y sin embargo se pueden obtener mediante simples iteracciones, es decir, repitiendo indefinidamente procedimientos geométricos o funcionales muy simples. Han dado origen a una nueva geometría: la geometría fractal. Una nueva herramienta matemática capaz de arrojar un poco de luz sobre los fenómenos caóticos y de mostrarnos que incluso en el caos es posible encontrar un determinado orden. |sinopsis=El ordenador los ha puesto de moda. Y sin embargo ya eran conocidos a principios de siglo. Nos referimos a los fractales. Son los objetos matemáticos más atractivos, espectaculares y enigmáticos. A medio camino entre la linea y el plano, entre el plano y el espacio, rompen hasta con el concepto clásico de dimensión. Sus dimensiones no son números enteros, de ahí su extraño nombre. Y sin embargo se pueden obtener mediante simples iteracciones, es decir, repitiendo indefinidamente procedimientos geométricos o funcionales muy simples. Han dado origen a una nueva geometría: la geometría fractal. Una nueva herramienta matemática capaz de arrojar un poco de luz sobre los fenómenos caóticos y de mostrarnos que incluso en el caos es posible encontrar un determinado orden.
}} }}
Línea 190: Línea 190:
|url1=http://maralboran.org/web_ma/videos/electoral/electoral.htm |url1=http://maralboran.org/web_ma/videos/electoral/electoral.htm
|titulo2=Acceso por red TIC |titulo2=Acceso por red TIC
-|url2=+|url2=http://c0/helvia/aula/archivos/repositorio/html/115/index.htm
|sinopsis=Cuando se anuncian unas elecciones una poderosa máquina matemática se pone en marcha. Es la Estadística a través de las encuestas y sondeos de opinión. Analizaremos en este programa los aspectos matemáticos más destacados de este tipo de sondeos y sus márgenes de fiabilidad. Pero después de depositar el voto las matemáticas siguen actuando. El sistema electoral español está basado en la ley D´Hont un sofisticado mecanismo en el que la aritmética interviene de forma determinante. Estudiaremos las características matemáticas de este sistema y su influencia en el mapa parlamentario en nuestro país. |sinopsis=Cuando se anuncian unas elecciones una poderosa máquina matemática se pone en marcha. Es la Estadística a través de las encuestas y sondeos de opinión. Analizaremos en este programa los aspectos matemáticos más destacados de este tipo de sondeos y sus márgenes de fiabilidad. Pero después de depositar el voto las matemáticas siguen actuando. El sistema electoral español está basado en la ley D´Hont un sofisticado mecanismo en el que la aritmética interviene de forma determinante. Estudiaremos las características matemáticas de este sistema y su influencia en el mapa parlamentario en nuestro país.
}} }}
Línea 208: Línea 208:
|url1=http://maralboran.org/web_ma/videos/graficas/graficas.htm |url1=http://maralboran.org/web_ma/videos/graficas/graficas.htm
|titulo2=Acceso por red TIC |titulo2=Acceso por red TIC
-|url2=+|url2=http://c0/helvia/aula/archivos/repositorio/html/116/index.htm
|sinopsis=Las gráficas de contenido matemático se han convertido en el lenguaje más universal de finales del siglo XX. En cualquier medio de comunicación cada vez que se quiere dar información cuantitativa de un proceso aparece una gráfica matemática. Sus ventajas son incuestionables, son capaces de ofrecer gran cantidad de información de un simple vistazo. Constituyen un instrumento imprescindible en campos tan dispares como la medicina, la economía, la física, la biología y hasta en el deporte. En este programa investigaremos su origen relativamente reciente, tienen poco más de 200 años de existencia, y sus distintas aplicaciones y daremos algunos consejos para interpretar de forma crítica la información presentada en forma de gráficas. |sinopsis=Las gráficas de contenido matemático se han convertido en el lenguaje más universal de finales del siglo XX. En cualquier medio de comunicación cada vez que se quiere dar información cuantitativa de un proceso aparece una gráfica matemática. Sus ventajas son incuestionables, son capaces de ofrecer gran cantidad de información de un simple vistazo. Constituyen un instrumento imprescindible en campos tan dispares como la medicina, la economía, la física, la biología y hasta en el deporte. En este programa investigaremos su origen relativamente reciente, tienen poco más de 200 años de existencia, y sus distintas aplicaciones y daremos algunos consejos para interpretar de forma crítica la información presentada en forma de gráficas.
}} }}
Línea 217: Línea 217:
|url1=http://maralboran.org/web_ma/videos/realidad/realidad.htm |url1=http://maralboran.org/web_ma/videos/realidad/realidad.htm
|titulo2=Acceso por red TIC |titulo2=Acceso por red TIC
-|url2=+|url2=http://c0/helvia/aula/archivos/repositorio/html/117/index.htm
|sinopsis=La belleza de las formas geométricas en la Alhambra de Granada es incuestionable; pero un grupo de alumnos de la Escuela de Arquitectura nos sorprenderá dando a algunas de las figuras geométricas nazaríes una aplicación práctica y funcional, como el diseño de una escuela o una urbanización de chalets. Veremos además cómo las matemáticas ayudan a medir y cuantificar fenómenos naturales tan distintos como la intensidad de un terremoto, el brillo de las estrellas o el ruido de nuestras calles. |sinopsis=La belleza de las formas geométricas en la Alhambra de Granada es incuestionable; pero un grupo de alumnos de la Escuela de Arquitectura nos sorprenderá dando a algunas de las figuras geométricas nazaríes una aplicación práctica y funcional, como el diseño de una escuela o una urbanización de chalets. Veremos además cómo las matemáticas ayudan a medir y cuantificar fenómenos naturales tan distintos como la intensidad de un terremoto, el brillo de las estrellas o el ruido de nuestras calles.
}} }}

Revisión de 13:25 10 dic 2007

UNIVERSO MATEMÁTICO

MÁS POR MENOS

OTROS

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda