Logaritmos (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 23:11 9 ene 2009
Coordinador (Discusión | contribuciones)
(Logaritmos)
← Ir a diferencia anterior
Revisión de 09:01 10 ene 2009
Coordinador (Discusión | contribuciones)
(Propiedades de los logaritmos)
Ir a siguiente diferencia →
Línea 24: Línea 24:
==Propiedades de los logaritmos== ==Propiedades de los logaritmos==
 +{{Caja_Amarilla|texto=
 +'''1: Igualdad y orden:'''
 +:a) <math>P \ne Q \Rightarrow log_a \ P \ne log_a \ Q</math>.
 +:b) <math>P < Q \Rightarrow log_a \ P < log_a \ Q</math> siempre <math>a>1\;</math> .
 +'''2: Logaritmo de la base'''
 +}}
==Logaritmos decimales== ==Logaritmos decimales==

Revisión de 09:01 10 ene 2009

Tabla de contenidos

Logaritmos

Dado un número real a>0 \quad (a \ne 1), se define el logaritmo en base a de un número real P\;, y se designa log_a \ P, al exponente x\; al que hay que elevar la base a\; para obtener P\;, es decir:

log_a \ P=x \iff a^x=P

Por consiguiente, podemos ver al logaritmo como la operación inversa de la potenciación.

ejercicio

Ejemplos: Logaritmos


Calcula los siguientes logaritmos: log_2 \ 16,\ log_{10} \ 1000,\ log_2 \ \cfrac{1}{8}, \ log_{10} \ 0.01

Propiedades de los logaritmos

1: Igualdad y orden:

a) P \ne Q \Rightarrow log_a \ P \ne log_a \ Q.
b) P < Q \Rightarrow log_a \ P < log_a \ Q siempre a>1\; .

2: Logaritmo de la base

Logaritmos decimales

Logaritmos neperianos

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda