Factorización de polinomios (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 09:01 13 ene 2009
Coordinador (Discusión | contribuciones)
(Procedimientos para la factorización de polinomios de grado mayor que 2)
← Ir a diferencia anterior
Revisión de 09:04 13 ene 2009
Coordinador (Discusión | contribuciones)
(División de un polinomio por (x-a). Regla de Ruffini)
Ir a siguiente diferencia →
Línea 138: Línea 138:
---- ----
Divide los polinomios usando la regla de [[Ruffini]]: Divide los polinomios usando la regla de [[Ruffini]]:
-:<math> P(x)=7x^4-5x^3-4x^2+6x-1\,\! </math> +::<math> P(x)=7x^4-5x^3-4x^2+6x-1\,\! </math>
-:<math> Q(x)=x-2\,\! </math>+::<math> Q(x)=x-2\,\! </math>
<div class="NavFrame" style="background: white; border: 0px solid #aaaaaa; padding:3px; margin-bottom:0em; margin-left:0em;"> <div class="NavFrame" style="background: white; border: 0px solid #aaaaaa; padding:3px; margin-bottom:0em; margin-left:0em;">
Línea 193: Línea 193:
</div> </div>
{{p}} {{p}}
 +
===Procedimientos para la factorización de polinomios de grado mayor que 2=== ===Procedimientos para la factorización de polinomios de grado mayor que 2===
*Siempre que se pueda, sacaremos <math>x\;</math> '''factor común'''. *Siempre que se pueda, sacaremos <math>x\;</math> '''factor común'''.

Revisión de 09:04 13 ene 2009

Tabla de contenidos

Divisibilidad de polinomios

Polinomios múltiplos y divisores

La divisibilidad en el conjunto de los polinomios es muy similar a la .

Un polinomio D(x)\, es divisor de otro, P(x)\, y lo representaremos por P(x)|Q(x)\;, si la división P(x):\,D(x)\, es exacta. Es decir, cuando

P(x)=\,D(x)\cdot C(x)\,

En tal caso, diremos que P(x)\, es divisible por Q(x)\,. También diremos que P(x)\, es un múltiplo de D(x)\,.

La divisibilidad de polinomios es semejante a la divisibilidad con números enteros. Asimismo, la factorización de polinomios equivale a la descomposición de un número en factores primos, y los conceptos de máximo común divisor, mínimo común múltiplo e irreducibilidad son similares a los correspondientes conceptos numéricos.

Polinomios irreducibles

Un polinomio P(x)\, es irreducible cuando ningún polinomio de grado inferior es divisor suyo.

Factorización de polinomios

Factorizar un polinomio es descomponerlo en producto de polinomios con el menor grado posible.

Factorización de polinomios de grado 2

ejercicio

Factorización de polinomios de segundo grado


Un polinomio de segundo grado, kx^2+mx+n\;, con raíces rales, a\; y b\;, se puede factorizar de la forma

k(x-a)(x-b)\;

División de un polinomio por (x-a). Regla de Ruffini

ejercicio

Regla de Ruffini


La Regla de Ruffini nos permite dividir un polinomio entre un binomio de la forma (x-r)\;, siendo r\; un número entero.

Debemos esta regla al matemático italiano Paolo Ruffini,


ejercicio

Ejemplo: Regla de Ruffini


Divide los polinomios usando la regla de Ruffini:

P(x)=7x^4-5x^3-4x^2+6x-1\,\!
Q(x)=x-2\,\!

Procedimientos para la factorización de polinomios de grado mayor que 2

  • Siempre que se pueda, sacaremos x\; factor común.
  • Mediante la regla de Ruffini buscaremos las raíces enteras del polinomio, que se hallan entre los divisores del término independiente. Así, si encontramos una raíz x=a\; de un polinomio P(x)\;, tendremos que P(x)=(x-a)Q(x)\;, donde Q(x)\; tiene un grado menos que P(x)\;.
  • Si es un polinomio bicuadrado, ax^4+bx^2+c\;, podremos hallarle las raices resolviendo la ecuación bicuadrada que resulta de igualarlo a cero.
  • Si un polinomio de grado mayor que 2 no puede factorizarse usando los procedimientos anteriores, es poco probable que podamos hacerlo con lo sconocimientos que tenemos.
Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda