Factorización de polinomios (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 09:04 13 ene 2009
Coordinador (Discusión | contribuciones)
(División de un polinomio por (x-a). Regla de Ruffini)
← Ir a diferencia anterior
Revisión de 09:07 13 ene 2009
Coordinador (Discusión | contribuciones)

Ir a siguiente diferencia →
Línea 54: Línea 54:
:(Observa que primero hemos sacado factor común <math>x\;</math> y luiego hemos factorizado el polinomio de grado 2, como hicimos en el ejemplo anterior). :(Observa que primero hemos sacado factor común <math>x\;</math> y luiego hemos factorizado el polinomio de grado 2, como hicimos en el ejemplo anterior).
}} }}
-{{p}} 
-===División de un polinomio por (x-a). Regla de Ruffini=== 
-<div style="background: white; border: 2px solid Goldenrod;border: 2px solid Goldenrod;border-left: 4px solid Goldenrod;border-bottom: 4px solid Goldenrod; padding:.75em;"> 
-[[Image:Teorema.PNG|44px|left|ejercicio]] 
-<font color="SaddleBrown">'''Regla de Ruffini'''</font> 
----- 
-La '''Regla de Ruffini''' nos permite dividir un polinomio entre un binomio de la forma <math>(x-r)\;</math>, siendo <math>r\;</math> un número entero. 
- 
-Debemos esta regla al matemático italiano [[Ruffini|Paolo Ruffini]], 
-<div class="NavFrame" style="background: white; border: 0px solid #aaaaaa; padding:3px; margin-bottom:0em; margin-left:0em;"> 
-<div class="NavHead rad" align="right" style="background: WhiteSmoke;">''Demostración:''</div><div class="NavContent" align="left"> 
----- 
-Vamos a dividir el polinomio 
- 
-<center><math>P(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0</math></center> 
- 
-entre el binomio  
- 
-<center><math>Q(x)=x-r\,\!</math></center> 
- 
-para obtener el cociente  
- 
-<center><math>C(x)=b_{n-1}x^{n-1}+b_{n-2}x^{n-2}+\cdots+b_1x+b_0</math></center> 
- 
-y el resto <math>s\;</math>. 
- 
-1. Trazamos dos líneas a manera de ejes. Cogemos los coeficientes de ''P''(''x'') y los escribimos ordenados. Entonces escribimos ''r'' en la parte inferior izquierda del eje, encima de la línea: 
- 
- | a<sub>n</sub> a<sub>n-1</sub> ... a<sub>1</sub> a<sub>0</sub> 
- |  
- r |  
- ----|--------------------------------------------------------- 
- |  
- |  
-2. Pasamos el coeficiente más pegado a la izquierda (''a''<sub>''n''</sub>) abajo, justo debajo de la línea para obtener el primero de los coeficientes ''b'': 
- 
- | a<sub>n</sub> a<sub>n-1</sub> ... a<sub>1</sub> a<sub>0</sub> 
- |  
- r |  
- ----|--------------------------------------------------------- 
- | a<sub>n</sub>  
- | 
- | = b<sub>n-1</sub>  
- | 
-3. Multiplicamos el número más pegado a la derecha debajo de la línea por ''r'' y lo escribimos sobre la línea en la primera posición de la derecha: 
- | a<sub>n</sub> a<sub>n-1</sub> ... a<sub>1</sub> a<sub>0</sub> 
- | 
- r | b<sub>n-1</sub>r 
- ----|--------------------------------------------------------- 
- | a<sub>n</sub> 
- | 
- | = b<sub>n-1</sub>  
- | 
-4. Añadimos los dos valores que hemos puesto en la misma columna: 
- | a<sub>n</sub> a<sub>n-1</sub> ... a<sub>1</sub> a<sub>0</sub> 
- | 
- r | b<sub>n-1</sub>r 
- ----|--------------------------------------------------------- 
- | a<sub>n</sub> a<sub>n-1</sub>+(b<sub>n-1</sub>r) 
- | 
- | = b<sub>n-1</sub> = b<sub>n-2</sub>  
- | 
-5. Repetimos los pasos 3 y 4 hasta que no tengamos más números: 
- | a<sub>n</sub> a<sub>n-1</sub> ... a<sub>1</sub> a<sub>0</sub> 
- | 
- r | b<sub>n-1</sub>r ... b<sub>1</sub>r b<sub>0</sub>r 
- ----|--------------------------------------------------------- 
- | a<sub>n</sub> a<sub>n-1</sub>+(b<sub>n-1</sub>r) ... a<sub>1</sub>+b<sub>1</sub>r a<sub>0</sub>+b<sub>0</sub>r 
- | 
- | = b<sub>n-1</sub> = b<sub>n-2</sub> ... = b<sub>0</sub> = s 
- | 
- 
-Los valores ''b'' son los coeficientes del polinomio resultante <math>C(x)\;</math>, el grado será menor que el grado de <math>P(x)\;</math>. El resto será <math>s\;</math>. 
- 
-</div> 
-</div> 
-</div> 
- 
- 
-<div style="background: white; padding:.75em; border:2px solid MediumBlue;border-left:4px solid MediumBlue;border-bottom:4px solid MediumBlue;"> 
-[[Image:ejemplo_blue.png|44px|left|ejercicio]] 
-<font color="MediumBlue">'''Ejemplo: Regla de Ruffini'''</font> 
----- 
-Divide los polinomios usando la regla de [[Ruffini]]: 
-::<math> P(x)=7x^4-5x^3-4x^2+6x-1\,\! </math>  
-::<math> Q(x)=x-2\,\! </math> 
- 
-<div class="NavFrame" style="background: white; border: 0px solid #aaaaaa; padding:3px; margin-bottom:0em; margin-left:0em;"> 
-<div class="NavHead rad" align="right" style="background: WhiteSmoke;">''Solución:''</div><div class="NavContent" align="left"> 
----- 
-::{| 
-| 
-{| 
-|- style="height:50px" 
-| 
-|align="center" style="width:25px; border-left:1px solid black"|7 
-|align="center" style="width:25px"| -5 
-|align="center" style="width:25px"| -4 
-|align="center" style="width:25px"|6 
-|align="center" style="width:25px"| -1 
-|- 
-|align="center" style="border-bottom:1px solid black"|2 
-|align="center" style="border-left:1px solid black; border-bottom:1px solid black"|&nbsp;  
-|align="center" style="border-bottom:1px solid black"|14 
-|align="center" style="border-bottom:1px solid black"|18 
-|align="center" style="border-bottom:1px solid black"|28 
-|align="center" style="border-bottom:1px solid black"|68 
-|- 
-| 
-|align="center" style="border-left:1px solid black"|7 
-|align="center"|9 
-|align="center"|14 
-|align="center"|34 
-|align="center" style="border-left:1px solid black; border-bottom:1px solid black"|67 
-|} 
-|style="width:80px"|&nbsp; 
-|'''Operaciones:''' 
-* <math>2 \cdot 7=14\,\!</math> 
- 
-* <math>-5+14=9\,\!</math> 
- 
-* <math>2 \cdot 9 =18\,\!</math> 
- 
-* <math>-4+18=14\,\!</math> 
- 
-* <math>2\cdot 14=28\,\!</math> 
- 
-* <math>6+28=34\,\!</math> 
- 
-* <math>2 \cdot 34=68\,\!</math> 
- 
-* <math>-1+68=67\,\!</math> 
-|} 
- 
-El resultado significa que el cociente de la división <math>C(x)=7x^3+9x^2+14x+34\,\!</math> y el resto es <math>67\,\!</math> 
-</div> 
-</div> 
-</div> 
-{{p}} 
- 
===Procedimientos para la factorización de polinomios de grado mayor que 2=== ===Procedimientos para la factorización de polinomios de grado mayor que 2===
-*Siempre que se pueda, sacaremos <math>x\;</math> '''factor común'''.+*Siempre que se pueda, sacaremos x '''factor común'''.
-*Mediante la '''regla de [[Ruffini]]''' buscaremos las raíces enteras del polinomio, que se hallan entre los divisores del término independiente. Así, si encontramos una raíz <math>x=a\;</math> de un polinomio <math>P(x)\;</math>, tendremos que <math>P(x)=(x-a)Q(x)\;</math>, donde <math>Q(x)\;</math> tiene un grado menos que <math>P(x)\;</math>.+*Mediante la '''[[Cociente de Polinomios. Regla de Ruffini (4ºESO-B)#División de un polinomio por (x-a). Regla de Ruffini|regla de Ruffini]]''' buscaremos las raíces enteras del polinomio, que se hallan entre los divisores del término independiente. Así, si encontramos una raíz <math>x=a\;</math> de un polinomio <math>P(x)\;</math>, tendremos que <math>P(x)=(x-a)Q(x)\;</math>, donde <math>Q(x)\;</math> tiene un grado menos que <math>P(x)\;</math>.
*Si es un '''polinomio bicuadrado''', ax^4+bx^2+c\;, podremos hallarle las raices resolviendo la ecuación bicuadrada que resulta de igualarlo a cero. *Si es un '''polinomio bicuadrado''', ax^4+bx^2+c\;, podremos hallarle las raices resolviendo la ecuación bicuadrada que resulta de igualarlo a cero.
*Si un polinomio de grado mayor que 2 no puede factorizarse usando los procedimientos anteriores, es poco probable que podamos hacerlo con lo sconocimientos que tenemos. *Si un polinomio de grado mayor que 2 no puede factorizarse usando los procedimientos anteriores, es poco probable que podamos hacerlo con lo sconocimientos que tenemos.
[[Categoría: Matemáticas]][[Categoría: Álgebra]] [[Categoría: Matemáticas]][[Categoría: Álgebra]]

Revisión de 09:07 13 ene 2009

Tabla de contenidos

Divisibilidad de polinomios

Polinomios múltiplos y divisores

La divisibilidad en el conjunto de los polinomios es muy similar a la .

Un polinomio D(x)\, es divisor de otro, P(x)\, y lo representaremos por P(x)|Q(x)\;, si la división P(x):\,D(x)\, es exacta. Es decir, cuando

P(x)=\,D(x)\cdot C(x)\,

En tal caso, diremos que P(x)\, es divisible por Q(x)\,. También diremos que P(x)\, es un múltiplo de D(x)\,.

La divisibilidad de polinomios es semejante a la divisibilidad con números enteros. Asimismo, la factorización de polinomios equivale a la descomposición de un número en factores primos, y los conceptos de máximo común divisor, mínimo común múltiplo e irreducibilidad son similares a los correspondientes conceptos numéricos.

Polinomios irreducibles

Un polinomio P(x)\, es irreducible cuando ningún polinomio de grado inferior es divisor suyo.

Factorización de polinomios

Factorizar un polinomio es descomponerlo en producto de polinomios con el menor grado posible.

Factorización de polinomios de grado 2

ejercicio

Factorización de polinomios de segundo grado


Un polinomio de segundo grado, kx^2+mx+n\;, con raíces rales, a\; y b\;, se puede factorizar de la forma

k(x-a)(x-b)\;

Procedimientos para la factorización de polinomios de grado mayor que 2

  • Siempre que se pueda, sacaremos x factor común.
  • Mediante la regla de Ruffini buscaremos las raíces enteras del polinomio, que se hallan entre los divisores del término independiente. Así, si encontramos una raíz x=a\; de un polinomio P(x)\;, tendremos que P(x)=(x-a)Q(x)\;, donde Q(x)\; tiene un grado menos que P(x)\;.
  • Si es un polinomio bicuadrado, ax^4+bx^2+c\;, podremos hallarle las raices resolviendo la ecuación bicuadrada que resulta de igualarlo a cero.
  • Si un polinomio de grado mayor que 2 no puede factorizarse usando los procedimientos anteriores, es poco probable que podamos hacerlo con lo sconocimientos que tenemos.
Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda