Transformaciones elementales de funciones (1ºBach)
De Wikipedia
| Revisión de 17:17 23 ene 2009 Coordinador (Discusión | contribuciones) (→Traslación vertical) ← Ir a diferencia anterior |
Revisión de 17:25 23 ene 2009 Coordinador (Discusión | contribuciones) (→Traslación horizontal) Ir a siguiente diferencia → |
||
| Línea 97: | Línea 97: | ||
| ==Traslación horizontal== | ==Traslación horizontal== | ||
| - | {{Caja_Amarilla|texto=Sea <math>f(x)\;</math> una función y <math>k>0\;</math> un número real, entonces la gráfica de la función <math>f(x+k)\;</math> se obtiene a partir de la de <math>f(x)\;</math> desplazándola <math>k\;</math> unidades hacia la izquierda y la de <math>f(x-k)\;</math> desplazándola <math>k\;</math> unidades hacia la derecha.}} | + | {{Caja_Amarilla|texto=Sea <math>f(x)\;</math> una función y <math>k\;</math> un número real, entonces: |
| + | *Si <math>k>0\;</math>, la gráfica de la función <math>f(x+k)\;</math> se obtiene a partir de la de <math>f(x)\;</math> desplazándola <math>k\;</math> unidades hacia la izquierda. | ||
| + | *Si <math>k<0\;</math>, la gráfica de la función <math>f(x+k)\;</math> se obtiene a partir de la de <math>f(x)\;</math> desplazándola <math>k\;</math> unidades hacia la derecha. | ||
| + | }} | ||
| {{p}} | {{p}} | ||
| {{AI2|titulo=Actividad Interactiva: ''Traslación horizontal de una función''|cuerpo= | {{AI2|titulo=Actividad Interactiva: ''Traslación horizontal de una función''|cuerpo= | ||
| {{ai_cuerpo | {{ai_cuerpo | ||
| - | |enunciado='''Actividad 1.''' Representación gráfica de una función <math>f(x)\;</math> cualquiera y de su transformada <math>f(x \pm k)</math>. | + | |enunciado='''Actividad 1.''' Representación gráfica de una función <math>f(x)\;</math> cualquiera y de su transformada <math>f(x + k)</math>. |
| |actividad= | |actividad= | ||
| En esta escena tienes la gráfica de la función <math>f(x) = x^2+x-5\;</math> (en verde) y la de <math>f(x+1)=(x+1)^2+(x+1)-5\;</math> (en amarillo). | En esta escena tienes la gráfica de la función <math>f(x) = x^2+x-5\;</math> (en verde) y la de <math>f(x+1)=(x+1)^2+(x+1)-5\;</math> (en amarillo). | ||
| Línea 114: | Línea 117: | ||
| <center>[http://maralboran.org/web_ma/descartes/Analisis/El_pinta_graficas/grafic_4c.html '''Click''' aquí si no se ve bien la escena]</center> | <center>[http://maralboran.org/web_ma/descartes/Analisis/El_pinta_graficas/grafic_4c.html '''Click''' aquí si no se ve bien la escena]</center> | ||
| - | Prueba a cambiar el valor de <math>k\;</math>: <math>f(x+2)=(x+2)^2+(x+2)-5 \ , \ f(x)-3=(x-3)^2+(x-3)-5</math>. Compáralas con <math>f(x)\;</math>. | + | Prueba a cambiar el valor de <math>k\;</math> y compáralas con <math>f(x)\;</math>: |
| + | |||
| + | *<math>k=2 \ \rightarrow \ f(x+2)=(x+2)^2+(x+2)-5 \ , \ f(x)-3=(x-3)^2+(x-3)-5</math>. | ||
| + | *<math>k=-3 \ \rightarrow \ f(x-3)=(x-3)^2+(x-3)-5</math>. | ||
| Prueba a cambiar también la función <math>f(x)=x^2+x-5\;</math> por otras funciones, por ejemplo, <math>f(x)=|x|\;</math>. (La función valor absoluto debes escribirla '''abs(x)'''). | Prueba a cambiar también la función <math>f(x)=x^2+x-5\;</math> por otras funciones, por ejemplo, <math>f(x)=|x|\;</math>. (La función valor absoluto debes escribirla '''abs(x)'''). | ||
| Línea 122: | Línea 128: | ||
| }} | }} | ||
| {{p}} | {{p}} | ||
| + | |||
| ==Simetría respecto del eje Y== | ==Simetría respecto del eje Y== | ||
| {{Caja_Amarilla|texto=Las gráficas de las funciones <math>f(x)\;</math> y su opuesta, <math>f(-x)\;</math>, son simétricas respecto del eje de ordenadas.}} | {{Caja_Amarilla|texto=Las gráficas de las funciones <math>f(x)\;</math> y su opuesta, <math>f(-x)\;</math>, son simétricas respecto del eje de ordenadas.}} | ||
Revisión de 17:25 23 ene 2009
| Enlaces internos | Para repasar o ampliar | Enlaces externos |
| Indice Descartes Manual Casio | Test de Álgebra | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
Traslación vertical
Sea
una función y
un número real, entonces la gráfica de la función
se obtiene a partir de la de
desplazándola
unidades hacia arriba y la de
desplazándola
unidades hacia abajo.
|
Actividad Interactiva: Traslación vertical de una función
Actividad 1. Representación gráfica de una función
cualquiera y de su transformada .Actividad: En esta escena tienes la gráfica de la función (en verde) y la de (en amarillo).
Prueba a cambiar el valor de
Prueba a cambiar también la función |
Simetría respecto del eje X
Las gráficas de las funciones
y su opuesta,
, son simétricas respecto del eje de abscisas.
|
Actividad Interactiva: Función simétrica respecto del eje X
Actividad 1. Representación gráfica de una función
cualquiera y de su simétrica .Actividad: En esta escena tienes la gráfica de la función (en verde) y la de su simétrica (en amarillo).
Prueba a cambiar la función |
Dilatación y contracción
- Si
, la gráfica de la función
es una dilatación o estiramiento vertical de la gráfica de
.
- Si
, la gráfica de la función
es una contracción o achatamiento vertical de la gráfica de
.
- Si
, tenemos la combinacion de una contracción y una simetría respecto del eje X.
- Si
, tenemos la combinacion de una dilatación y una simetría respecto del eje X.
|
Actividad Interactiva: Dilatación y contracción de una función
Actividad 1. Representación gráfica de una función
cualquiera y de su transformada .Actividad: En esta escena tienes la gráfica de la función (en verde) y la de su dilatada (en amarillo).
Prueba a cambiar el valor de
|
Traslación horizontal
Sea
una función y
un número real, entonces:
- Si
, la gráfica de la función
se obtiene a partir de la de
desplazándola
unidades hacia la izquierda.
- Si
, la gráfica de la función
se obtiene a partir de la de
desplazándola
unidades hacia la derecha.
|
Actividad Interactiva: Traslación horizontal de una función
Actividad 1. Representación gráfica de una función
cualquiera y de su transformada f(x + k).Actividad: En esta escena tienes la gráfica de la función (en verde) y la de (en amarillo).
Prueba a cambiar el valor de
Prueba a cambiar también la función |
Simetría respecto del eje Y
Las gráficas de las funciones
y su opuesta,
, son simétricas respecto del eje de ordenadas.
|
Actividad Interactiva: Función simétrica respecto del eje Y
Actividad 1. Representación gráfica de una función
cualquiera y de su simétrica .Actividad: En esta escena tienes la gráfica de la función (en verde) y la de su simétrica (en amarillo).
Prueba a cambiar la función |
.
(en verde) y la de
(en amarillo).
.
.
(en verde) y la de su simétrica
(en amarillo).
. (Para la raíz cuadrada debes escribir sqrt(x)).
(en amarillo).
. Obtendrás una contracción de
. Obtendrás una contracción de
. Obtendrás una dilatación de
.
(en verde) y la de
(en amarillo).
.
.
. (La función valor absoluto debes escribirla abs(x)).
(en amarillo).
.

