Transformaciones elementales de funciones (1ºBach)
De Wikipedia
Revisión de 17:29 23 ene 2009 Coordinador (Discusión | contribuciones) (→Traslación horizontal) ← Ir a diferencia anterior |
Revisión de 17:32 23 ene 2009 Coordinador (Discusión | contribuciones) (→Traslación horizontal) Ir a siguiente diferencia → |
||
Línea 116: | Línea 116: | ||
Prueba a cambiar el valor de <math>k\;</math> y compáralas con <math>f(x)\;</math>: | Prueba a cambiar el valor de <math>k\;</math> y compáralas con <math>f(x)\;</math>: | ||
- | *<math>k=2 \ \rightarrow \ f(x+2)=(x+2)^2+(x+2)-5 \ , \ f(x)-3=(x-3)^2+(x-3)-5</math>. | + | *<math>Sumar \ k=2 \ \rightarrow \ f(x+2)=(x+2)^2+(x+2)-5 \ , \ f(x)-3=(x-3)^2+(x-3)-5</math>. |
- | *<math>k=-3 \ \rightarrow \ f(x-3)=(x-3)^2+(x-3)-5</math>. | + | *<math>Restar \ k=3 \ \rightarrow \ f(x-3)=(x-3)^2+(x-3)-5</math>. |
Prueba a cambiar también la función <math>f(x)=x^2+x-5\;</math> por otras funciones, por ejemplo, <math>f(x)=|x|\;</math>. (La función valor absoluto debes escribirla '''abs(x)'''). | Prueba a cambiar también la función <math>f(x)=x^2+x-5\;</math> por otras funciones, por ejemplo, <math>f(x)=|x|\;</math>. (La función valor absoluto debes escribirla '''abs(x)'''). |
Revisión de 17:32 23 ene 2009
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | Test de Álgebra | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
Traslación vertical
Sea una función y un número real, entonces la gráfica de la función se obtiene a partir de la de desplazándola unidades hacia arriba y la de desplazándola unidades hacia abajo.
Actividad Interactiva: Traslación vertical de una función
Actividad 1. Representación gráfica de una función cualquiera y de su transformada .
Actividad: En esta escena tienes la gráfica de la función (en verde) y la de (en amarillo). Prueba a cambiar el valor de y compáralas con :
Prueba a cambiar también la función por otras funciones, por ejemplo, . No olvides pulsar "Intro" al cambiar cada función. |
Simetría respecto del eje X
Las gráficas de las funciones y su opuesta, , son simétricas respecto del eje de abscisas.
Actividad Interactiva: Función simétrica respecto del eje X
Actividad 1. Representación gráfica de una función cualquiera y de su simétrica .
Actividad: En esta escena tienes la gráfica de la función (en verde) y la de su simétrica (en amarillo). Prueba a cambiar la función por otras funciones, por ejemplo, . (Para la raíz cuadrada debes escribir sqrt(x)). No olvides pulsar "Intro" al cambiar cada función. |
Dilatación y contracción
- Si , la gráfica de la función es una dilatación o estiramiento vertical de la gráfica de .
- Si , la gráfica de la función es una contracción o achatamiento vertical de la gráfica de .
- Si , tenemos la combinacion de una contracción y una simetría respecto del eje X.
- Si , tenemos la combinacion de una dilatación y una simetría respecto del eje X.
Actividad Interactiva: Dilatación y contracción de una función
Actividad 1. Representación gráfica de una función cualquiera y de su transformada .
Actividad: En esta escena tienes la gráfica de la función (en verde) y la de su dilatada (en amarillo). Prueba a cambiar el valor de :
|
Traslación horizontal
Sea una función y un número real, entonces la gráfica de la función se obtiene a partir de la de desplazándola unidades hacia la izquierda y la de desplazándola unidades hacia la derecha.
Actividad Interactiva: Traslación horizontal de una función
Actividad 1. Representación gráfica de una función cualquiera y de su transformada .
Actividad: En esta escena tienes la gráfica de la función (en verde) y la de (en amarillo). Prueba a cambiar el valor de y compáralas con :
Prueba a cambiar también la función por otras funciones, por ejemplo, . (La función valor absoluto debes escribirla abs(x)). No olvides pulsar "Intro" al cambiar cada función. |
Simetría respecto del eje Y
Las gráficas de las funciones y su opuesta, , son simétricas respecto del eje de ordenadas.
Actividad Interactiva: Función simétrica respecto del eje Y
Actividad 1. Representación gráfica de una función cualquiera y de su simétrica .
Actividad: En esta escena tienes la gráfica de la función (en verde) y la de su simétrica (en amarillo). Prueba a cambiar la función por otras funciones, por ejemplo, . No olvides pulsar "Intro" al cambiar cada función. |