Transformaciones elementales de funciones (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 17:36 23 ene 2009
Coordinador (Discusión | contribuciones)
(Dilatación y contracción)
← Ir a diferencia anterior
Revisión de 17:39 23 ene 2009
Coordinador (Discusión | contribuciones)

Ir a siguiente diferencia →
Línea 2: Línea 2:
|ir= |ir=
|ampliar= |ampliar=
-|repasar=[http://www.maralboran.org/web_ma/algebraconpapas/index.htm Test de Álgebra]+|repasar=
|enlaces= |enlaces=
}} }}

Revisión de 17:39 23 ene 2009

Tabla de contenidos

Traslación vertical

Sea f(x)\; una función y k>0\; un número real, entonces la gráfica de la función f(x)+k\; se obtiene a partir de la de f(x)\; desplazándola k\; unidades hacia arriba y la de f(x)-k\; desplazándola k\; unidades hacia abajo.

ejercicio

Actividad Interactiva: Traslación vertical de una función


Actividad 1. Representación gráfica de una función f(x)\; cualquiera y de su transformada f(x) \pm k.

Simetría respecto del eje X

Las gráficas de las funciones f(x)\; y su opuesta, -f(x)\;, son simétricas respecto del eje de abscisas.

ejercicio

Actividad Interactiva: Función simétrica respecto del eje X


Actividad 1. Representación gráfica de una función f(x)\; cualquiera y de su simétrica -f(x)\;.

Dilatación y contracción

  • Si k>1\;, la gráfica de la función k \cdot f(x)\; es una dilatación o estiramiento vertical de la gráfica de f(x)\;.
  • Si 0<k<1\;, la gráfica de la función k \cdot f(x)\; es una contracción o achatamiento vertical de la gráfica de f(x)\;.
  • Si -1<k<0\;, la gráfica de la función k \cdot f(x)\; es la combinacion de una contracción y una simetría respecto del eje X.
  • Si k<-1\;, la gráfica de la función k \cdot f(x)\; es la combinacion de una dilatación y una simetría respecto del eje X.

ejercicio

Actividad Interactiva: Dilatación y contracción de una función


Actividad 1. Representación gráfica de una función f(x)\; cualquiera y de su transformada k \cdot f(x)\;.

Traslación horizontal

Sea f(x)\; una función y k>0\; un número real, entonces la gráfica de la función f(x+k)\; se obtiene a partir de la de f(x)\; desplazándola k\; unidades hacia la izquierda y la de f(x-k)\; desplazándola k\; unidades hacia la derecha.

ejercicio

Actividad Interactiva: Traslación horizontal de una función


Actividad 1. Representación gráfica de una función f(x)\; cualquiera y de su transformada f(x \pm k).

Simetría respecto del eje Y

Las gráficas de las funciones f(x)\; y su opuesta, f(-x)\;, son simétricas respecto del eje de ordenadas.

ejercicio

Actividad Interactiva: Función simétrica respecto del eje Y


Actividad 1. Representación gráfica de una función f(x)\; cualquiera y de su simétrica f(-x)\;.
Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda