Números complejos: Operaciones (1ºBach)
De Wikipedia
Revisión de 19:40 10 mar 2009 Coordinador (Discusión | contribuciones) (→Operaciones con números complejos en forma binómica) ← Ir a diferencia anterior |
Revisión de 19:43 10 mar 2009 Coordinador (Discusión | contribuciones) (→Operaciones con números complejos en forma binómica) Ir a siguiente diferencia → |
||
Línea 27: | Línea 27: | ||
# <math>\,\frac{(5 - 3i)}{(4 + 2i)}=\frac{(5 - 3i)(4-2i)}{(4 + 2i)(4-2i)}=\frac{(20-10i-12i+6i^2)}{(16-8i+8i-4i^2)}=\frac{(20-6-10i-12i)}{(16+4)}=\frac{14}{20}-\frac{22}{20}i</math> | # <math>\,\frac{(5 - 3i)}{(4 + 2i)}=\frac{(5 - 3i)(4-2i)}{(4 + 2i)(4-2i)}=\frac{(20-10i-12i+6i^2)}{(16-8i+8i-4i^2)}=\frac{(20-6-10i-12i)}{(16+4)}=\frac{14}{20}-\frac{22}{20}i</math> | ||
}} | }} | ||
- | {{p}} | ||
{{p}} | {{p}} | ||
{{AI2|titulo=Actividad interactiva: ''Operaciones con números complejos''|cuerpo= | {{AI2|titulo=Actividad interactiva: ''Operaciones con números complejos''|cuerpo= |
Revisión de 19:43 10 mar 2009
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Operaciones con números complejos en forma binómica
- Suma:
- Resta:
- Multiplicación:
- División: , siempre que no sea nulo.
Actividad interactiva: Operaciones con números complejos
Actividad 1: Suma y resta de complejos en forma binómica.
Actividad: En esta escena tienes representados los números complejos: z1=a+bi y z2=c+di Así como su SUMA z1+z2 y su RESTA z1-z2 (Recuerda el paralelogramo que se forma con dos vectores, cuyas diagonales son la suma y la resta de los mismos, fíjate bien en la escena) Puedes cambiar los valores de a, b, c y d, moviendo los AFIJOS de z1 y/o z2 con el ratón, o bien introduciendo sus valores en la parte inferior de la escena. Observa la escena y averigua cómo se SUMAN y se RESTAN números complejos. EJERCICIO: Efectúa las siguientes operaciones en tu cuaderno y haz una comprobación posterior en la escena:
Actividad 2: Multiplicación de complejos en forma binómica.
Actividad: En la escena adjunta se muestra la forma de realizar el producto de dos números complejos, z1·z2=(a+bi)(c+di) Moviendo los AFIJOS de z1 y z2, o introduciendo los valores de a, b, c y d, puedes ir viendo los resultados. EJERCICIO: Efectúa las siguientes multiplicaciones en tu cuaderno y haz una comprobación posterior en la escena:
Actividad 3: División de complejos en forma binómica.
Actividad: En la escena adjunta se muestra la forma de realizar el cociente de dos números complejos, z1:z2=(a+bi):(c+di) Puedes cambiar los valores de a, b, c y d, o mover los puntos z1 y z2 para hallar otras divisiones. EJERCICIO: Efectúa las siguientes divisiones en tu cuaderno y compruébalas en la escena: |
Propiedades de las operaciones con números complejos
- El 0 es el elemento neutro de la suma.
- Todo número complejo, , tiene un opuesto,
- El 1 es el elemento neutro del producto.
- Todo número complejo, , distinto de 0, tiene inverso, :