Transformaciones elementales de funciones (1ºBach)
De Wikipedia
Revisión de 18:49 12 mar 2009 Coordinador (Discusión | contribuciones) ← Ir a diferencia anterior |
Revisión actual Coordinador (Discusión | contribuciones) |
||
Línea 5: | Línea 5: | ||
|enlaces= | |enlaces= | ||
}} | }} | ||
+ | {{p}} | ||
+ | __TOC__ | ||
+ | {{p}} | ||
+ | (Pág. 256) | ||
{{p}} | {{p}} | ||
{{Transformaciones elementales de funciones (1ºBach)}} | {{Transformaciones elementales de funciones (1ºBach)}} | ||
+ | {{p}} | ||
+ | ==Ejercicios propuestos== | ||
+ | {{ejercicio | ||
+ | |titulo=Ejercicios propuestos: ''Transformaciones elementales de funciones'' | ||
+ | |cuerpo= | ||
+ | (Pág. 256-257) | ||
+ | |||
+ | [[Imagen:red_star.png|12px]] 1, 2, 3 | ||
+ | |||
+ | |||
+ | }} | ||
[[Categoría: Matemáticas]][[Categoría: Funciones]] | [[Categoría: Matemáticas]][[Categoría: Funciones]] |
Revisión actual
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
(Pág. 256)
Traslación vertical y horizontal
- Traslación vertical: Sea una función y un número real, entonces la gráfica de la función se obtiene a partir de la de desplazándola unidades hacia arriba y la de desplazándola unidades hacia abajo.
- Traslación horizontal: Sea una función y un número real, entonces la gráfica de la función se obtiene a partir de la de desplazándola unidades hacia la izquierda y la de desplazándola unidades hacia la derecha.
En esta escena podrás ver la representación conjunta una función y su transformada por traslación horizontal o vertical.
Representa la función: .
Representa la función: .
Representa la función: .
Representa la función: .
Simetrías
- Simetría respecto del eje X: Las gráficas de las funciones y son simétricas respecto del eje de abscisas.
- Simetría respecto del eje Y: Las gráficas de las funciones y son simétricas respecto del eje de ordenadas.
- Simetría respecto del origen: Las gráficas de las funciones y son simétricas respecto del origen de coordenadas.
En esta escena podrás ver la representación conjunta una función y su simétrica.
La función "f" se dice "par" si f(-x) = f(x), y se dice "impar" si f(-x) = -f(x). Si "f" es par, su gráfica es simétrica respecto al eje de ordenadas. Si "f" es impar, su gráfica es simétrica respecto al origen de coordenadas. Obvio: si Dom f. no es simétrico respecto al punto "0", la función "f" no es par ni impar.
Dilatación y contracción
Vertical:
- Si , la gráfica de la función es una dilatación vertical de la gráfica de .
- Si , la gráfica de la función es una contracción vertical vertical de la gráfica de .
Horizontal:
- Si , la gráfica de la función es una contracción horizontal de la gráfica de .
- Si , la gráfica de la función es una dilatación horizontal de la gráfica de .
En esta escena podrás ver la representación conjunta una función y su transformada por dilatación o contracción.
Representa las funciones:
1)
2)
Representa las funciones:
1)
2)
Representa las funciones:
1)
2)
2)
Actividades
En esta escena podrás practicar las transformaciones de funciones. Se te propondrán algunos ejercicios.
Representa a partir de la gráfica de
Determina la ecuación de una función tipo valor absoluto a partir de su gráfica, describiendo las transformaciones sufridas a partir de la gráfica de .
Halla la ecuación de la función que resulta de reflejar sobre el eje X y comprimir verticalmente en un factor de 8/3, la función .
Tutorial en el que se explica como representar funciones del tipo f(x)=ax^2+bx+c utilizando la traslación de ejes.
Tutorial en el que se explica como representar funciones hiperbólicas expresadas de la forma f(x)=a/(x+b) + c, utilizando un algoritmo general.
Ejercicios propuestos
Ejercicios propuestos: Transformaciones elementales de funciones |