Transformaciones elementales de funciones (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 18:49 12 mar 2009
Coordinador (Discusión | contribuciones)

← Ir a diferencia anterior
Revisión actual
Coordinador (Discusión | contribuciones)

Línea 5: Línea 5:
|enlaces= |enlaces=
}} }}
 +{{p}}
 +__TOC__
 +{{p}}
 +(Pág. 256)
{{p}} {{p}}
{{Transformaciones elementales de funciones (1ºBach)}} {{Transformaciones elementales de funciones (1ºBach)}}
 +{{p}}
 +==Ejercicios propuestos==
 +{{ejercicio
 +|titulo=Ejercicios propuestos: ''Transformaciones elementales de funciones''
 +|cuerpo=
 +(Pág. 256-257)
 +
 +[[Imagen:red_star.png|12px]] 1, 2, 3
 +
 +
 +}}
[[Categoría: Matemáticas]][[Categoría: Funciones]] [[Categoría: Matemáticas]][[Categoría: Funciones]]

Revisión actual

Tabla de contenidos

(Pág. 256)

Traslación vertical y horizontal

  • Traslación vertical: Sea f(x)\; una función y k>0\; un número real, entonces la gráfica de la función f(x)+k\; se obtiene a partir de la de f(x)\; desplazándola k\; unidades hacia arriba y la de f(x)-k\; desplazándola k\; unidades hacia abajo.

  • Traslación horizontal: Sea f(x)\; una función y k>0\; un número real, entonces la gráfica de la función f(x+k)\; se obtiene a partir de la de f(x)\; desplazándola k\; unidades hacia la izquierda y la de f(x-k)\; desplazándola k\; unidades hacia la derecha.

Simetrías

  • Simetría respecto del eje X: Las gráficas de las funciones f(x)\; y -f(x)\; son simétricas respecto del eje de abscisas.

  • Simetría respecto del eje Y: Las gráficas de las funciones f(x)\; y f(-x)\; son simétricas respecto del eje de ordenadas.
  • Simetría respecto del origen: Las gráficas de las funciones f(x)\; y -f(-x)\; son simétricas respecto del origen de coordenadas.

Dilatación y contracción

Vertical:

  • Si k>1\;, la gráfica de la función k \cdot f(x)\; es una dilatación vertical de la gráfica de f(x)\;.
  • Si 0<k<1\;, la gráfica de la función k \cdot f(x)\; es una contracción vertical vertical de la gráfica de f(x)\;.

Horizontal:

  • Si k>1\;, la gráfica de la función f(k \cdot x)\; es una contracción horizontal de la gráfica de f(x)\;.
  • Si 0<k<1\;, la gráfica de la función f(k \cdot x)\; es una dilatación horizontal de la gráfica de f(x)\;.

Actividades

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Transformaciones elementales de funciones


(Pág. 256-257)

1, 2, 3

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda