Puntos y vectores el plano (1ºBach)
De Wikipedia
Revisión de 13:36 17 mar 2009 Coordinador (Discusión | contribuciones) ← Ir a diferencia anterior |
Revisión de 13:38 17 mar 2009 Coordinador (Discusión | contribuciones) (→Simétrico de un punto respecto de otro) Ir a siguiente diferencia → |
||
Línea 225: | Línea 225: | ||
<center><math>M=\Big( \cfrac{2+7}{2}, \cfrac{4+2}{2} \Big)=(4.5,3)</math></center> | <center><math>M=\Big( \cfrac{2+7}{2}, \cfrac{4+2}{2} \Big)=(4.5,3)</math></center> | ||
- | Moviendo con el ratón los puntos A y/o B podrás comprobar cuáles son las coordenadas del punto medio M, de cualquier otro segmento AB. | + | Moviendo con el ratón los puntos A y/o B podrás comprobar cuáles son las coordenadas del punto medio M, de cualquier otro segmento AB. También te vale para comprobar el punto simétrico de otro punto respecto de uno dado. |
<center><iframe> | <center><iframe> | ||
Línea 238: | Línea 238: | ||
#Calcula en tu cuaderno las coordenadas del punto medio del segmento de extremos A(-3,7), B(7,-1). Comprueba el resultado en la escena anterior. | #Calcula en tu cuaderno las coordenadas del punto medio del segmento de extremos A(-3,7), B(7,-1). Comprueba el resultado en la escena anterior. | ||
- | #Calcula en tu cuaderno el simétrico, P', del punto P(8,4) respecto de Q(4,1) | + | #Calcula en tu cuaderno el simétrico, P', del punto P(8,4) respecto de Q(4,1). Compruébalo en la escena. |
}} | }} | ||
}} | }} | ||
[[Categoría: Matemáticas]][[Categoría: Geometría]] | [[Categoría: Matemáticas]][[Categoría: Geometría]] |
Revisión de 13:38 17 mar 2009
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
Sistema de referencia en el plano
Un sistema de referencia del plano consiste en una terna , donde es un punto fijo, llamado origen, y una base de vectores del plano.
En este sistema de referencia, cada punto del plano tiene asociado un vector fijo , llamado vector de posición del punto .
Si el vector tiene coordenadas respecto de la base , el punto diremos que tiene coordenadas respecto del sistema de referencia .
Normalmente trabajaremos con un sistema de referencia en el que la base es ortonormal.
Actividad interactiva: Sistema de referencia en el plano
Actividad: En la siguiente escena tenemos un punto que da lugar al vector , que tiene de coordenadas respecto de la base ortonormal . Así, el punto tendrá coordenadas respecto del sistema de referencia . Ejercicio:
|
Coordenadas del vector que une dos puntos
Actividad interactiva: Coordenadas del vector que une dos puntos
Actividad: En la siguiente escena tenemos dos puntos y . Las coordenadas del vector . Ejercicio:
|
Condición para que tres puntos estén alineados
Condición para que tres puntos estén alineados
- Los puntos del plano , y , están alineados si se cumple:
Los puntos del plano , y , están alineados si los vectores y tienen la misma dirección.
Ahora, esto ocurre si los vectores son proporcionales:
Actividad interactiva: Condición para que tres puntos estén alineados Actividad 1: Comprobación de que tres puntos del plano están alineados en un sistema de referencia ortonormal . Actividad: En esta escena puedes mover los puntos B y C, para comprobar que las coordenadas de los vectores AB y BC son proporcionales, ya que los puntos A, B y C están alineados. Anota en tu cuaderno las coordenadas de A, B y C, la de los vectores AB y BC y la proporción entre las x y las y en el inicio de la escena. Ejercicio:
Actividad 2: Averigua las coordenadas de un punto para que esté alineado con otros dos. Actividad: En esta escena tenemos tres puntos P(1,4), Q(5,-2) y R(m,n) Moviendo adecuadamente el punto R, o cambiando los valores de m y/o n, puedes conseguir que los puntos P, Q y R estén en la misma recta azul, o sea, ALINEADOS.
Ejercicio:
|
Punto medio de un segmento
Simétrico de un punto respecto de otro
Actividad interactiva: Punto medio y punto simétrico
Actividad: En la siguiente escena tenemos el punto medio de un segmento de extremos y . Moviendo con el ratón los puntos A y/o B podrás comprobar cuáles son las coordenadas del punto medio M, de cualquier otro segmento AB. También te vale para comprobar el punto simétrico de otro punto respecto de uno dado. Ejercicios:
|