La elipse (1ºBach)
De Wikipedia
| Revisión de 12:14 31 mar 2009 Coordinador (Discusión | contribuciones) ← Ir a diferencia anterior |
Revisión de 12:16 31 mar 2009 Coordinador (Discusión | contribuciones) (→Excentricidad de la elipse) Ir a siguiente diferencia → |
||
| Línea 65: | Línea 65: | ||
| |actividad= | |actividad= | ||
| <center><iframe> | <center><iframe> | ||
| - | url=http://maralboran.org/web_ma/geogebra/figuras/elipse_2.html | + | url=http://maralboran.org/web_ma/geogebra/figuras/elipse_4.html |
| width=780 | width=780 | ||
| height=460 | height=460 | ||
| name=myframe | name=myframe | ||
| </iframe></center> | </iframe></center> | ||
| - | <center>[http://maralboran.org/web_ma/geogebra/figuras/elipse_2.html '''Click''' aquí si no se ve bien la escena]</center> | + | <center>[http://maralboran.org/web_ma/geogebra/figuras/elipse_4.html '''Click''' aquí si no se ve bien la escena]</center> |
| '''Ejercicios:''' | '''Ejercicios:''' | ||
| Línea 84: | Línea 84: | ||
| }} | }} | ||
| {{p}} | {{p}} | ||
| + | |||
| ==Ecuación reducida de la elipse== | ==Ecuación reducida de la elipse== | ||
| {{Teorema|titulo=Ecuación reducida de la elipse|enunciado=:La ecuación de una elipse con semieje mayor <math>a\,</math> y semieje menor <math>b\,</math>, con centro en el origen de coordenadas y focos en el eje de abscisas es: | {{Teorema|titulo=Ecuación reducida de la elipse|enunciado=:La ecuación de una elipse con semieje mayor <math>a\,</math> y semieje menor <math>b\,</math>, con centro en el origen de coordenadas y focos en el eje de abscisas es: | ||
Revisión de 12:16 31 mar 2009
| Enlaces internos | Para repasar o ampliar | Enlaces externos |
| Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
Elementos de la elipse
Una una elipse de focos
|
|
Excentricidad de la elipse
La escentricidad de la elipse es el cociente entre la distancia focal y el eje mayor:

Propiedades
.
- La excentricidad mide el achatamiento de la elipse: cuanto más próxima a 1 más se parece a a una circunferencia.
- Como la hipotenusa del triángulo rectángulo es mayor que los catetos, tenemos que
- y como
y
, tenemos que
- Cuanto más próxima a 1 sea la excentricidad, más proximos son
y
y, por tanto, más se aproxima
a cero.
|
Actividad interactiva: Excentricidad de la elipse
Actividad 1: En la siguiente escena vamos a ver como se ve afectada la elipse si modificamos su excentricidad.
Actividad: Ejercicios:
|
Ecuación reducida de la elipse
Ecuación reducida de la elipse
- La ecuación de una elipse con semieje mayor
y semieje menor
, con centro en el origen de coordenadas y focos en el eje de abscisas es:
|
|
Sean
y
los focos de la elipse. Cualquier punto P(x,y) de la misma cumple:

Sustituyendo las distancias por su fórmula matemática:

Pasamos la segunda raíz al segundo miembro:

Se elevan al cuadrado ambos miebros y se simplifica:



Se elevan al cuadrado los dos miembros:

Reordenando y agrupando términos:

Teniendo en cuenta que
:

Dividiendo la expresión por
:
se obtiene la cuación buscada:

|
Actividad interactiva: Ecuación reducida de la elipse
Actividad 1: En la siguiente escena vamos a calcular la ecuación reducida de la elipse de semiejes 5 y 9.
Actividad: La ecuación reducida viene dada por la fórmula: ![]() Sustituyendo a=5 y b=3, tenemos: ![]() Puedes ver su gráfica en la siguente escena: Ejercicio:
|
Ecuación de la elipse con los focos en el eje Y
Ecuación de la elipse con los focos en el eje Y
- La ecuación de una elipse con semieje mayor
y semieje menor
, con centro en el origen de coordenadas y focos en el eje de ordenadas es:
|
|
- Su excentricidad es:
Ecuación de la elipse con el centro desplazado del origen de coordenadas
Ecuación de la elipse con el centro desplazado del origen
- La ecuación de una elipse con semiejes
y
y centro
es:
|
|
|
Actividad interactiva: Ecuación reducida de la elipse
Actividad 1: En la siguiente escena vamos a calcular la ecuación de la elipse de centro O(3,-1) y semiejes 5 y 2.
Actividad: La ecuación reducida viene dada por la fórmula: ![]() Sustituyendo ![]() Puedes ver su gráfica en la siguente escena: Ejercicio:
|
y
, con ejes de simetría
y
, que se cortan en el centro
de la elipse, determina los siguientes segmentos:



(constante de la elipse)
un punto de la elipse:

un punto de la elipse:

, tenemos


,
,
,
, tenemos:



