Plantilla:Definición de función

De Wikipedia

(Diferencia entre revisiones)
Revisión de 06:19 2 abr 2009
Coordinador (Discusión | contribuciones)
(Formas de expresar una función)
← Ir a diferencia anterior
Revisión de 07:32 11 oct 2014
Coordinador (Discusión | contribuciones)

Ir a siguiente diferencia →
Línea 4: Línea 4:
}} }}
{{p}} {{p}}
-{{AI2|titulo=Actividad Interactiva: ''Funciones''|cuerpo= 
-{{ai_cuerpo 
-|enunciado='''Actividad 1:''' Las entradas del cine: Función que relaciona el coste de las entradas con el número de personas que van a ver la película. 
-|actividad= 
-<center><iframe> 
-url=http://contenidos.santillanaenred.com/jukebox/servlet/GetPlayer?p3v=true&xref=200412010859_PRE_0_-401408898&mode=1&rtc=1001&locale=es_ES&cache=false',600,400,'snrPop',0); 
-width=100% 
-height=600 
-name=myframe 
-</iframe></center> 
-<center>[http://contenidos.santillanaenred.com/jukebox/servlet/GetPlayer?p3v=true&xref=200412010859_PRE_0_-401408898&mode=1&rtc=1001&locale=es_ES&cache=false',600,400,'snrPop',0); '''Click''' aquí si no se ve bien la escena]</center> 
-}} 
-}} 
- 
==Formas de expresar una función== ==Formas de expresar una función==
Hay varias formas de expresar una función: Hay varias formas de expresar una función:
Línea 228: Línea 214:
f) Las gráficas unas veces son convexas (tipo U) y otras cóncavas (tipo U invertida), ¿de qué depende? f) Las gráficas unas veces son convexas (tipo U) y otras cóncavas (tipo U invertida), ¿de qué depende?
-}} 
-{{ai_cuerpo 
-|enunciado='''Actividad 4:''' Laura y el ascensor: Encuentra la gráfica que corresponde a cada movimiento. 
-|actividad= 
- 
-<center><iframe> 
-url=http://contenidos.santillanaenred.com/jukebox/servlet/GetPlayer?p3v=true&xref=200412010957_AC_0_-527244533&mode=1&rtc=1001&locale=es_ES&cache=false',750,540,'snrPop',0); 
-width=100% 
-height=620 
-name=myframe 
-</iframe></center> 
-<center>[http://contenidos.santillanaenred.com/jukebox/servlet/GetPlayer?p3v=true&xref=200412010957_AC_0_-527244533&mode=1&rtc=1001&locale=es_ES&cache=false',750,540,'snrPop',0); '''Click''' aquí si no se ve bien la escena]</center> 
}} }}
}} }}

Revisión de 07:32 11 oct 2014

Definición

Una función es una relación entre dos variables, de forma que a cada valor de la variable independiente x\;, le asocia un único valor de la variable dependiente y\;, que llamaremos imagen de x\;. Decimos que y es función de x\; y lo representamos por

y = f(x)\;\!

Formas de expresar una función

Hay varias formas de expresar una función:

  • Mediante un enunciado.
  • Mediante una expresión algebraica.
  • Mediante una gráfica.

Veamos unos ejemplos en la siguiente actividad:

ejercicio

Actividades Interactivas: Formas de expresar una función


Actividad 1: Un ejemplo en el que la variable independiente es discreta.
Actividad 2: Un caso en el que la variable independiente es continua.

En la actividad anterior hemos podido ver que:

La variable independiente puede ser:

  • Discreta: Si los valores que toma van dando saltos. Su gráfica está formada por puntos separados. Por ejemplo, la variable "número de boligrafos que compramos en una papelería".
  • Continua: Si los valores que toma no dan saltos. Su gráfica está formada por trazos. Por ejemplo, la variable "peso de una persona".

ejercicio

Actividades Interactivas: Interpretación de gráficas


Actividad 1: Determina si son o no son funciones las siguientes gráficas.
Actividad 2: Función cuya gráfica es una recta.
Actividad 3: Función cuya gráfica no es una recta.

ejercicio

Video: El lenguaje de las gráficas (13´)



Ejercicios

ejercicio

Ejercicio: Funciones y gráficas


1. La siguiente gráfica describe el vuelo de un águila desde que sale del nido hasta que vuelve a él con una presa que caza durante el trayecto.

a) ¿Cuáles son las variables relacionadas?
b) ¿Qué representa cada cuadrito en cada eje?
c) ¿A qué altura se encuentra el nido?
d) ¿Cuánto dura el vuelo y cuando caza a la presa?
e) ¿Qúe altura máxima alcanza el águila en su vuelo?. ¿Y la mínima?
f) ¿Qué ocurre entre el segundo 50 y 80?

2. Poner una anuncio por palabras cuesta una cantidad fija de 0.50 € y 0.05 € por cada palabra.

a) Haz una tabla de la función "número de palabras-precio".
b) Representa gráficamente los resultados del apartado a).
c) ¿Cómo es la variable independiente: continua o discreta?
d) Encuentra una fórmula que exprese esta función.

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda