Plantilla:Inecuaciones cuadráticas con una incógnita

De Wikipedia

(Diferencia entre revisiones)
Revisión de 01:52 10 sep 2016
Coordinador (Discusión | contribuciones)
(Resolución de inecuaciones cuadráticas con una incógnita)
← Ir a diferencia anterior
Revisión de 12:27 18 sep 2016
Coordinador (Discusión | contribuciones)
(Resolución de sistemas de inecuaciones cuadráticas con una incógnita)
Ir a siguiente diferencia →
Línea 52: Línea 52:
|enunciado= |enunciado=
-:Resuelve:+Resuelve:
:a) <math>x^2-5x+4 \le 0</math> :a) <math>x^2-5x+4 \le 0</math>

Revisión de 12:27 18 sep 2016

Una inecuación cuadrática con una incógnita es una inecuación en la que las expresiones algebaricas que intervienen en la desigualdad, son polinomios de segundo grado en una sola variable. En consecuencia, puede ponerse, mediante transformaciones, de alguna de estas formas:

ax^2+bx+c<0 \ , \quad ax^2+bx+c \le 0  \ , \quad ax^2+bx+c>0 \ , \quad ax^2+bx+c \ge 0 \qquad (a \ne 0)

Resolución de inecuaciones cuadráticas con una incógnita

Para resolver estas inecuaciones usaremos el método gráfico. Este método requiere que el miembro de la derecha de la inecuación sea cero, lo cual siempre se puede conseguir mediante transformaciones.

Resolución de sistemas de inecuaciones cuadráticas con una incógnita

Para resolver un sistema de inecuaciones cuadráticas con una incógnita, hay que resolver cada inecuación por separado y finalmente seleccionar la solución común a ambas (intersección de los conjuntos solución de ambas).

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda