Fórmulas trigonométricas (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 17:35 28 sep 2016
Coordinador (Discusión | contribuciones)
(Transformaciones de sumas y diferencias de senos y cosenos en productos)
← Ir a diferencia anterior
Revisión de 17:36 28 sep 2016
Coordinador (Discusión | contribuciones)
(Razones trigonométricas del ángulo mitad)
Ir a siguiente diferencia →
Línea 146: Línea 146:
{{Teorema|titulo=Razones trigonométricas del ángulo mitad {{Teorema|titulo=Razones trigonométricas del ángulo mitad
|enunciado= |enunciado=
-:'''IV.1:'''{{b4}}<math>sen \, \Big( \cfrac{\alpha}{2} \Big) = \sqrt{\cfrac{1-cos \, \alpha}{2}}</math>+'''IV.1:'''{{b4}}<math>sen \, \Big( \cfrac{\alpha}{2} \Big) = \sqrt{\cfrac{1-cos \, \alpha}{2}}</math>
-:'''IV.2:'''{{b4}}<math>cos \, \Big( \cfrac{\alpha}{2} \Big) = \sqrt{\cfrac{1+cos \, \alpha}{2}}</math>+'''IV.2:'''{{b4}}<math>cos \, \Big( \cfrac{\alpha}{2} \Big) = \sqrt{\cfrac{1+cos \, \alpha}{2}}</math>
-:'''IV.3:'''{{b4}}<math>tg \, \Big( \cfrac{\alpha}{2} \Big) = \sqrt{\cfrac{1-cos \, \alpha}{1+cos \, \alpha}}</math>+'''IV.3:'''{{b4}}<math>tg \, \Big( \cfrac{\alpha}{2} \Big) = \sqrt{\cfrac{1-cos \, \alpha}{1+cos \, \alpha}}</math>
|demo=Teniendo en cuenta que <math>\alpha= 2 \cdot \cfrac{\alpha}{2}</math> y utilizando la fórmula '''III.2''' del coseno del ángulo doble, tenemos: |demo=Teniendo en cuenta que <math>\alpha= 2 \cdot \cfrac{\alpha}{2}</math> y utilizando la fórmula '''III.2''' del coseno del ángulo doble, tenemos:
Línea 181: Línea 181:
|titulo=Ejemplo: ''Razones trigonométricas del ángulo mitad'' |titulo=Ejemplo: ''Razones trigonométricas del ángulo mitad''
|enunciado={{p}} |enunciado={{p}}
-:Calcula el valor exacto de {{sube|porcentaje=10%|contenido=<math>tg \, 22^\circ \, 30'</math>}} (sin calculadora).+Calcula el valor exacto de {{sube|porcentaje=10%|contenido=<math>tg \, 22^\circ \, 30'</math>}} (sin calculadora).
|sol= |sol=
-:<math>tg \, 22^\circ \, 30'= tg \Big( \cfrac{45^\circ}{2} \Big)=\sqrt{\cfrac{1-cos \, 45^\circ}{1+cos \, 45^\circ}}=\sqrt{\cfrac{1-\cfrac{\sqrt{2}}{2}}{1+\cfrac{\sqrt{2}}{2}}}=\cfrac{\sqrt{2-\sqrt{2}}}{\sqrt{2+\sqrt{2}}}=-1+\sqrt{2}</math>+<math>tg \, 22^\circ \, 30'= tg \Big( \cfrac{45^\circ}{2} \Big)=\sqrt{\cfrac{1-cos \, 45^\circ}{1+cos \, 45^\circ}}=\sqrt{\cfrac{1-\cfrac{\sqrt{2}}{2}}{1+\cfrac{\sqrt{2}}{2}}}=\cfrac{\sqrt{2-\sqrt{2}}}{\sqrt{2+\sqrt{2}}}=-1+\sqrt{2}</math>
}} }}
{{p}} {{p}}

Revisión de 17:36 28 sep 2016

Tabla de contenidos

Razones trigonométricas de la suma de dos ángulos

ejercicio

Razones trigonométricas de la suma de dos ángulos


I.1:    sen \, (\alpha + \beta) = sen \, \alpha \cdot cos \, \beta + cos \, \alpha \cdot sen \, \beta

I.2:    cos \, (\alpha + \beta) = cos \, \alpha \cdot cos \, \beta - sen \, \alpha \cdot sen \, \beta

I.3:    tg \, (\alpha + \beta) = \frac{tg \, \alpha + tg \, \beta}{1 - tg \, \alpha \cdot tg \, \beta}

ejercicio

Ejemplo: Razones trigonométricas de la suma de dos ángulos


Calcula el valor exacto de sen \, 75^\circ \, (sin calculadora)

Razones trigonométricas de la diferencia de dos ángulos

ejercicio

Razones trigonométricas de la diferencia de dos ángulos


II.1:    sen \, (\alpha - \beta) = sen \, \alpha \cdot cos \, \beta - cos \, \alpha \cdot sen \, \beta

II.2:    cos \, (\alpha - \beta) = cos \, \alpha \cdot cos \, \beta + sen \, \alpha \cdot sen \, \beta

II.3:    tg \, (\alpha - \beta) = \frac{tg \, \alpha - tg \, \beta}{1 + tg \, \alpha \cdot tg \, \beta}

ejercicio

Ejemplo: Razones trigonométricas de la diferencia de dos ángulos


Calcula el valor exacto de sen \, 15^\circ (sin calculadora)

Razones trigonométricas del ángulo doble

ejercicio

Razones trigonométricas del ángulo doble


III.1:    sen \, (2 \, \alpha) = 2 \, sen \, \alpha \cdot cos \, \alpha
III.2:    cos \, (2 \, \alpha) = cos^2 \, \alpha - sen^2 \, \alpha
III.3:    tg \, (2 \, \alpha) = \frac{2 \, tg \, \alpha}{1 - tg^2 \, \alpha}

ejercicio

Ejemplo: Razones trigonométricas del ángulo doble


Calcula el valor de cos \, 120^\circ \, a partir de las razones trigonométricas de 60º.

Razones trigonométricas del ángulo mitad

ejercicio

Razones trigonométricas del ángulo mitad


IV.1:    sen \, \Big( \cfrac{\alpha}{2} \Big) = \sqrt{\cfrac{1-cos \, \alpha}{2}}

IV.2:    cos \, \Big( \cfrac{\alpha}{2} \Big) = \sqrt{\cfrac{1+cos \, \alpha}{2}}

IV.3:    tg \, \Big( \cfrac{\alpha}{2} \Big) = \sqrt{\cfrac{1-cos \, \alpha}{1+cos \, \alpha}}

ejercicio

Ejemplo: Razones trigonométricas del ángulo mitad


Calcula el valor exacto de tg \, 22^\circ \, 30' (sin calculadora).

Transformaciones de sumas y diferencias de senos y cosenos en productos

ejercicio

Transformaciones de sumas en productos


V.1:    sen \, A + sen \, B = 2 \, sen \, \cfrac{A+B}{2} \cdot cos \, \cfrac{A-B}{2}

V.2:    sen \, A - sen \, B = 2 \, cos \, \cfrac{A+B}{2} \cdot sen \, \cfrac{A-B}{2}

V.3:    cos \, A + cos \, B = 2 \, cos \, \cfrac{A+B}{2} \cdot cos \, \cfrac{A-B}{2}

V.4:    cos \, A - cos \, B = -2 \, sen \, \cfrac{A+B}{2} \cdot sen \, \cfrac{A-B}{2}

ejercicio

Ejemplo: Transformaciones de sumas en productos


Transforma en producto y calcula: sen \, 75^\circ -sen \, 15^\circ.

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda