Plantilla:Máximos y mínimos de una función
De Wikipedia
(Diferencia entre revisiones)
Revisión de 18:39 5 nov 2016 Coordinador (Discusión | contribuciones) ← Ir a diferencia anterior |
Revisión de 09:47 6 nov 2016 Coordinador (Discusión | contribuciones) Ir a siguiente diferencia → |
||
Línea 8: | Línea 8: | ||
{{Geogebra_enlace | {{Geogebra_enlace | ||
|descripcion=En esta escena podrás ver cuando una función alcanza un máximo o un mínimo. | |descripcion=En esta escena podrás ver cuando una función alcanza un máximo o un mínimo. | ||
- | |enlace=[https://ggbm.at/yJZpJ93k Crecimiento. Máximos y mínimos] | + | |enlace=[https://ggbm.at/yJZpJ93k Actividad 1: Crecimiento. Máximos y mínimos] |
+ | }} | ||
+ | {{p}} | ||
+ | {{Geogebra_enlace | ||
+ | |descripcion=Interpreta la siguiente gráfica que muestra las temperaturas a lo largo de un día de invierno en un pueblo de Valladolid. | ||
+ | |enlace=[https://ggbm.at/JGfZ3v4T Actividad 2: Crecimiento. Máximos y mínimos] | ||
}} | }} | ||
{{p}} | {{p}} | ||
Línea 14: | Línea 19: | ||
|cuerpo= | |cuerpo= | ||
{{ai_cuerpo | {{ai_cuerpo | ||
- | |enunciado= | + | |enunciado=Construye una grafica que cumpla ciertas condiciones de crecimiento, de máximos y mínimos. |
- | 1. Interpreta la siguiente gráfica que muestra las temperaturas a lo largo de un día de invierno en un pueblo de Valladolid. | + | |
- | |actividad= | + | |
- | La siguiente gráfica muestra las temperaturas a lo largo de un día de invierno en un pueblo de Valladolid. En el eje horizontal hemos representado las horas del día y en el eje vertical, las temperaturas en ºC. | + | |
- | + | ||
- | Cuando éstas aumentan decimos que la función es creciente. Cuando disminuyen, diremos que es decreciente. | + | |
- | + | ||
- | En aquellos puntos de la gráfica de una función donde pasa de ser decreciente a ser creciente decimos que alcanza un mínimo. En los puntos que pasa de ser creciente a ser decreciente alcanza un máximo. | + | |
- | + | ||
- | <center><iframe> | + | |
- | url=http://maralboran.org/web_ma/descartes/1y2_eso/Interpretacion_de_graficas/Graficas_4.html | + | |
- | width=560 | + | |
- | height=400 | + | |
- | name=myframe | + | |
- | </iframe></center> | + | |
- | + | ||
- | Haz click con el ratón en los puntos de la gráfica de los que quieras saber sus coordenadas y contesta: | + | |
- | + | ||
- | a) ¿Qué temperatura hizo a las 0 horas? ¿Y a las 10 horas? | + | |
- | + | ||
- | b) ¿A qué hora había 0º? | + | |
- | + | ||
- | c) ¿A qué hora se alcanzó la temperatura máxima del día?¿Cuál fue la temperatura máxima? | + | |
- | + | ||
- | d) ¿A qué hora se alcanzo la temperatura mínima del día? ¿Cuál fue la temperatura mínima? | + | |
- | + | ||
- | e) ¿En que periodo del día subió la temperatura? ¿En qué periodo bajó? ¿En qué periodos se mantuvo constante? | + | |
- | + | ||
- | f) ¿En qué período del día hubo una temperatura por debajo de 0º? | + | |
- | + | ||
- | g) Construye una tabla con las temperaturas que se registraron a lo largo del día. | + | |
- | + | ||
- | <table border="1" width="100%"> | + | |
- | <tr> | + | |
- | <td width="8%"><strong>Hora</strong></td> | + | |
- | <td align="center" width="6%"><strong>0</strong></td> | + | |
- | <td align="center" width="6%"><strong>2</strong></td> | + | |
- | <td align="center" width="6%"><strong>4</strong></td> | + | |
- | <td align="center" width="6%"><strong>6</strong></td> | + | |
- | <td align="center" width="6%"><strong>8</strong></td> | + | |
- | <td align="center" width="6%"><strong>10</strong></td> | + | |
- | <td align="center" width="6%"><strong>12</strong></td> | + | |
- | <td align="center" width="6%"><strong>14</strong></td> | + | |
- | <td align="center" width="6%"><strong>16</strong></td> | + | |
- | <td align="center" width="7%"><strong>18</strong></td> | + | |
- | <td align="center" width="7%"><strong>20</strong></td> | + | |
- | <td align="center" width="7%"><strong>22</strong></td> | + | |
- | <td align="center" width="7%"><strong>24</strong></td> | + | |
- | </tr> | + | |
- | <tr> | + | |
- | <td width="8%"><strong>Temperatura</strong></td> | + | |
- | <td width="6%"> </td> | + | |
- | <td width="6%"> </td> | + | |
- | <td width="6%"> </td> | + | |
- | <td width="6%"> </td> | + | |
- | <td width="6%"> </td> | + | |
- | <td width="6%"> </td> | + | |
- | <td width="6%"> </td> | + | |
- | <td width="6%"> </td> | + | |
- | <td width="6%"> </td> | + | |
- | <td width="7%"> </td> | + | |
- | <td width="7%"> </td> | + | |
- | <td width="7%"> </td> | + | |
- | <td width="7%"> </td> | + | |
- | </tr> | + | |
- | </table> | + | |
- | }} | + | |
- | {{ai_cuerpo | + | |
- | |enunciado=2. Construye una grafica que cumpla ciertas condiciones de crecimiento, de máximos y mínimos. | + | |
|actividad= | |actividad= | ||
En la siguiente escena se representa la gráfica de una función creciente en el intervalo [0,8], decreciente en el intervalo [8,16] y creciente de nuevo en el intervalo [16,24]. La función alcanza un máximo en el punto B y un mínimo en el punto C. | En la siguiente escena se representa la gráfica de una función creciente en el intervalo [0,8], decreciente en el intervalo [8,16] y creciente de nuevo en el intervalo [16,24]. La función alcanza un máximo en el punto B y un mínimo en el punto C. |
Revisión de 09:47 6 nov 2016
- Una función tiene un máximo relativo en un punto cuando es mayor que los valores que toma la variable en un intervalo entorno al punto.
- Una función tiene un mínimo relativo en un punto cuando es menor que los valores que toma la variable en un intervalo entorno al punto.
Actividad 1: Crecimiento. Máximos y mínimos Descripción:
En esta escena podrás ver cuando una función alcanza un máximo o un mínimo.
Actividad 2: Crecimiento. Máximos y mínimos Descripción:
Interpreta la siguiente gráfica que muestra las temperaturas a lo largo de un día de invierno en un pueblo de Valladolid.
Actividad: Crecimiento. Máximos y mínimos
Construye una grafica que cumpla ciertas condiciones de crecimiento, de máximos y mínimos.
Actividad: En la siguiente escena se representa la gráfica de una función creciente en el intervalo [0,8], decreciente en el intervalo [8,16] y creciente de nuevo en el intervalo [16,24]. La función alcanza un máximo en el punto B y un mínimo en el punto C. Arrastra los puntos A, B, C y D para representar gráficas con las siguientes características. En cada caso, escribe en tu cuaderno en qué intervalos la función es creciente y en cuáles es decreciente: a) Pasa por los puntos (0,3) y (24,0), alcanza un máximo en el punto (8,6), un mínimo en el punto (16,-5). b) Pasa por el punto (0,5) y se mantiene constante en todo el intervalo [0, 8], alcanza un mínimo en (16, -1) y un máximo en (24,8). |