Plantilla:Reglas de derivación (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 10:10 3 may 2017
Coordinador (Discusión | contribuciones)

← Ir a diferencia anterior
Revisión de 10:12 3 may 2017
Coordinador (Discusión | contribuciones)
(Actividades)
Ir a siguiente diferencia →
Línea 178: Línea 178:
:5. <math>f(x)=\cfrac{a+bx+cx^2}{x}\;</math> :5. <math>f(x)=\cfrac{a+bx+cx^2}{x}\;</math>
|url1=https://www.youtube.com/watch?v=-91UZ9S19Oo |url1=https://www.youtube.com/watch?v=-91UZ9S19Oo
 +}}
 +{{Video_enlace_julioprofe
 +|titulo1=Ejercicio 6
 +|duracion=4'01"
 +|sinopsis=Calcula la derivada de:
 +:6. <math>m(x)=e^{5x} \ ln\,(2x-9)\;</math>
 +|url1=https://www.youtube.com/watch?v=LkWxSDjA_3E
}} }}

Revisión de 10:12 3 may 2017

Hemos visto en el apartado anterior como se obtiene la función derivada de una función. Es un proceso largo y pesado. Existen una serie de reglas, demostradas por medio de ese procedimiento, que nos permitirán aliviar el trabajo del cálculo de la función derivada.

Derivada de las funciones elementales

ejercicio

Reglas de derivación


  • Función constante:
D(k)=0 \, , \ \forall k \in \mathbb{R}
  • Función identidad:
D(x)=1\;
  • Función potencia:
D(x^n)=n \, x^{n-1}\;

  • Funciones trigonométricas directas:
D(sen\,x)=cos \, x
D(cos\,x)=-sen \, x
D(tg\,x)=1+tg^2\,x=\cfrac{1}{cos^2 x}
  • Funciones trigonométricas recíprocas:
D(arc\,sen\,x)=\cfrac{1}{\sqrt{1-x^2}}
D(arc\,cos\,x)=\cfrac{-1}{\sqrt{1-x^2}}
D(arc\,tg\,x)=\cfrac{1}{1+x^2}
  • Funciones exponenciales:
D(e^x)=e^x\;
D(a^x)=a^x \cdot ln\,a

  • Funciones logarítmicas:
D(ln\,x)=\cfrac{1}{x}
D(log_a\,x)=\cfrac{1}{x} \cdot \cfrac{1}{ln\,a}

Derivada de operaciones con funciones

ejercicio

Reglas de derivación


  • Producto de una función por una constante:
D[k\,f(x)]=k\,f'(x)\;


  • Suma de funciones:
D[f(x)+g(x)]=f'(x)+g'(x)\;


  • Producto de funciones:
D[f(x) \cdot g(x)]=f'(x) \cdot g(x) + f(x) \cdot g'(x)\;


  • Cociente de funciones:
D \left[ \cfrac{f(x)}{g(x)} \right]=\cfrac{f'(x) \cdot g(x) + f(x) \cdot g'(x)}{g(x)^2}\;


  • Composición de funciones (Regla de la cadena):
D\{g[f(x)]\}=g'[f(x)] \cdot f'(x)\;


ejercicio

Ejemplos: Reglas de derivación


Actividades

ejercicio

Ejercicios resueltos: Reglas de derivación


Halla la derivada de las siguientes funciones:

  1. f(x)=2x^3-5x^2+3x-2\;
  2. g(x)=\sqrt{2x} + \sqrt[3]{5x^2}
  3. h(x)=\cfrac{1}{x \sqrt{x}}
  4. i(x)=2^{3x}\;
  5. j(x)=\cfrac{x^3}{x^2+1}
  6. k(x)=arc \, tg \sqrt{x^2+1}

ejercicio

Ejercicios resueltos: Reglas de derivación


Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda