Plantilla:Teorema del resto
De Wikipedia
(Diferencia entre revisiones)
Revisión de 20:47 20 may 2017 Coordinador (Discusión | contribuciones) ← Ir a diferencia anterior |
Revisión de 20:48 20 may 2017 Coordinador (Discusión | contribuciones) Ir a siguiente diferencia → |
||
Línea 38: | Línea 38: | ||
|duracion=12´46" | |duracion=12´46" | ||
|url1=https://www.youtube.com/watch?v=FibOZcx5p8E | |url1=https://www.youtube.com/watch?v=FibOZcx5p8E | ||
- | |sinopsis=*Teorema del resto para la división de un polinomio entre un binomio del tipo ax+b. | + | |sinopsis=*Teorema del resto para la división de un polinomio entre un binomio del tipo (ax+b). |
*Como ejemplo, también resolveremos los siguientes ejercicios: | *Como ejemplo, también resolveremos los siguientes ejercicios: | ||
- | :1) Halla el resto de dividir el polinomio <math>2x^4-5x^3+3x-6\;</math> entre el binomio <math>x-2\;</math>. | + | :1) Halla el resto de dividir el polinomio <math>2x^4-5x^3+3x-6\;</math> entre el binomio <math>(x-2)\;</math>. |
- | :2) Halla el resto de dividir el polinomio <math>9x^3+3x^2+3x+1\;</math> entre el binomio <math>3x+1\;</math>. | + | :2) Halla el resto de dividir el polinomio <math>9x^3+3x^2+3x+1\;</math> entre el binomio <math>(3x+1)\;</math>. |
}} | }} | ||
{{Video_enlace_julioprofe | {{Video_enlace_julioprofe | ||
|titulo1=Ejercicio 1 | |titulo1=Ejercicio 1 | ||
|duracion=3'33" | |duracion=3'33" | ||
- | |sinopsis=Halla el resto de la división del polinomio <math>x^3-2x^2+9\;</math> entre <math>x+2\;</math>. | + | |sinopsis=Halla el resto de la división del polinomio <math>x^3-2x^2+9\;</math> entre <math>(x+2)\;</math>. |
|url1=https://www.youtube.com/watch?v=Pv-HtVEHoSI&list=PL9B9AC3136D2D4C45&index=25}} | |url1=https://www.youtube.com/watch?v=Pv-HtVEHoSI&list=PL9B9AC3136D2D4C45&index=25}} | ||
{{Video_enlace_unicoos | {{Video_enlace_unicoos | ||
|titulo1=Ejercicio 2 | |titulo1=Ejercicio 2 | ||
|duracion=7'08" | |duracion=7'08" | ||
- | |sinopsis=Halla el valor de <math>k\;</math> para que la división del polinomio <math>5x^4-x^2+kx-4\;</math> entre <math>x+2\;</math> sea exacta. | + | |sinopsis=Halla el valor de <math>k\;</math> para que la división del polinomio <math>5x^4-x^2+kx-4\;</math> entre <math>(x+2)\;</math> sea exacta. |
|url1=http://www.unicoos.com/video/matematicas/4-eso/polinomios/teorema-del-resto/teorema-del-resto | |url1=http://www.unicoos.com/video/matematicas/4-eso/polinomios/teorema-del-resto/teorema-del-resto | ||
}} | }} | ||
Línea 62: | Línea 62: | ||
1) Halla el resto de la división del polinomio <math>x^3+x^2+x-1\;</math> entre <math>(x-2)\;</math>, <math>(x+2)\;</math>, <math>(x-0)\;</math> y <math>(3-x)\;</math>. | 1) Halla el resto de la división del polinomio <math>x^3+x^2+x-1\;</math> entre <math>(x-2)\;</math>, <math>(x+2)\;</math>, <math>(x-0)\;</math> y <math>(3-x)\;</math>. | ||
- | 2) Determina el valor de k para que el polinomio <math>Q(x)=kx^3+(2k-1)x^2+x-k\;</math> sea divisible por <math>x-2\;</math>. | + | 2) Determina el valor de k para que el polinomio <math>Q(x)=kx^3+(2k-1)x^2+x-k\;</math> sea divisible por <math>(x-2)\;</math>. |
- | 3) Sea <math>T(x)=4x^3-2kx^2+k^2 x-k\;</math>. Halla el valor de k para que el resto de la división de <math>T(x)\;</math> entre <math>x-1\;</math> sea igual a 2. | + | 3) Sea <math>T(x)=4x^3-2kx^2+k^2 x-k\;</math>. Halla el valor de k para que el resto de la división de <math>T(x)\;</math> entre <math>(x-1)\;</math> sea igual a 2. |
}} | }} | ||
}} | }} | ||
{{p}} | {{p}} |
Revisión de 20:48 20 may 2017
Teorema del Resto
El valor que toma un polinomio, , cuando hacemos
, coincide con el resto de la división de
entre
. Es decir,
, donde
es el resto de dicha división.