Plantilla:Representación de funciones polinómicas (1ºBach)
De Wikipedia
Revisión de 08:32 12 jun 2017 Coordinador (Discusión | contribuciones) ← Ir a diferencia anterior |
Revisión de 09:00 12 jun 2017 Coordinador (Discusión | contribuciones) Ir a siguiente diferencia → |
||
Línea 14: | Línea 14: | ||
|titulo=Estudio y representación gráfica de funciones polinómicas | |titulo=Estudio y representación gráfica de funciones polinómicas | ||
|enunciado= | |enunciado= | ||
+ | {{Video_enlace_clasematicas | ||
+ | |titulo1=Estudio del dominio y la imagen | ||
+ | |duracion=34'30" | ||
+ | |sinopsis=Tutorial en el que se explica el cálculo del dominio e imagen (recorrido) de funciones dadas por su fórmula, en este caso de funciones polinómicas. | ||
+ | |url1=https://www.youtube.com/watch?v=QqaU5zXRPKs&list=PLZNmE9BEzVIkfJ32AmaQoob2npxScGpo3&index=13 | ||
+ | }} | ||
{{Video_enlace_clasematicas | {{Video_enlace_clasematicas | ||
|titulo1=Estudio del signo | |titulo1=Estudio del signo |
Revisión de 09:00 12 jun 2017
Procedimiento
En el estudio y representación gráfica de una función polinómica, f(x),tendremos que determinar los siguientes apartados:
- Dominio: .
- Puntos de corte: Los puntos de corte con el eje X se obtienen resolviendo la ecuación f(x)=0, para lo que tendremos que resolver una ecuación polinómica usando las técnicas vistas en temas anteriores. El punto de corte con el eje Y se obtiene calculando f(0).
- Signo de f(x): para el estudio del signo usaremos sólo los puntos de corte ya que una función polinómica no tiene discontinuidades.
- Puntos singulares de f(x) que se obtienen resolviendo la ecuación f '(x)=0. Por tanto, tendremos que resolver otra ecuación polinómica.
- Intervalos de crecimiento y decrecimiento de f(x): a partir de los puntos singulares y estudiando el signo de f '(x). Así podremos determinar los máximos y mínimos relativos de f(x).
- Asíntotas y ramas infinitas: Las funciones polinómicas no tienen ningún tipo de asíntotas. Tan sólo habrá que estudiar el límite cuando x tiende a +/- infinito.
- Simetrías: ver si f(x) es par o impar.
Tutorial en el que se explica el cálculo del dominio e imagen (recorrido) de funciones dadas por su fórmula, en este caso de funciones polinómicas.
Todo lo que necesitas saber para resolver inecuaciones polinómicas de cualquier grado. Tutorial que explica de forma completa la resolución de estas inecuaciones, empezando por comprender el estudio del signo de un polinomio y resolviendo varios ejericios donde se aplica.
- 00:00 a 01:30: Introducción.
- 1:30 a 10:10: Estudio del Signo de un Polinomio dada su gráfica.
- 10:10 a 17:45: Ejemplo de introducción al algoritmo.
- 17:45a 19:30: Algoritmo de resolución de inecuaciones polinómicas.
- 19:30 a 38:35: Aplicación del algoritmo. Ejemplos resueltos.
Los ceros de un polinomio son los puntos de corte de la función polinómica con el eje X.
En este ejemplo calcularemos los ceros del polinomio
Crecicmiento y extremos de
Estudio y representación gráfica de la función polinómica
Ejercicios resueltos: Estudio y representación gráfica de funciones polinómicas
Estudia y representa:
- a) .
- b) .
- c) .
Utiliza la siguiente escena para comprobar los resultados.
En la siguiente escena puedes ver la representación gráfica de distintas funciones.