La relación de divisibilidad (1º ESO)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 09:49 8 ago 2017
Coordinador (Discusión | contribuciones)
(Múliplo y divisor)
← Ir a diferencia anterior
Revisión de 09:55 8 ago 2017
Coordinador (Discusión | contribuciones)
(Múliplo y divisor)
Ir a siguiente diferencia →
Línea 18: Línea 18:
==Múliplo y divisor== ==Múliplo y divisor==
{{Def Multiplo y divisor}} {{Def Multiplo y divisor}}
-===Propiedades de los múltiplos y de los divisores=== 
-{{Propiedades de los múltiplos y de los divisores}} 
-{{p}} 
==Ejercicios propuestos== ==Ejercicios propuestos==

Revisión de 09:55 8 ago 2017

Tabla de contenidos

Introducción

(Pág. 44)

Relación de divisibilidad

Dos números enteros a\; y b\; (a \ge b\;) , están emparentados por la relación de divisibilidad cuando la división a:b\; es exacta.

Múliplo y divisor

Si a\; y b\; (a \ge b)\; están emparentados por la relación de divisibilidad, es decir, a : b\; es exacta, entonces decimos que:

  • a\; es multiplo b\; y lo expresaremos simbólicamente: a= \dot b.
  • b\; es divisor de a\; y lo expresaremos simbólicamente: b|a \;\!.

ejercicio

Proposición


Si a\; es multiplo de b\;, entonces existe un número entero k\;\! tal que a=b \cdot k.



Propiedades

ejercicio

Propiedades de los múltiplos


  • Todo número natural es múltiplo de 1 y de sí mismo.
  • Todo número natural a\, tiene infinitos múltiplos, a \cdot k, que se obtienen multiplicándolo por un número natural k\, cualquiera.
  • El 0 es múltiplo de cualquier número.
  • La suma de dos o más multiplos de a\, es otro múltiplo de a\,.
  • La diferencia de dos múltiplos de un número es otro múltiplo de dicho número.
  • Si un número es múltiplo de otro, y éste lo es de un tercero, el primero es múltiplo del tercero.
  • Si un número es múltiplo de otro, todos los múltiplos del primero lo son también del segundo.

ejercicio

Propiedades de los divisores


  • Todo número natural distinto de cero tiene al menos dos divisores: 1 y él mismo.
  • Todo divisor de un número distinto de cero es menor o igual a él. Por tanto, el número de divisores es finito.
  • Si un número es divisor de otros dos, también lo es de su suma y de su diferencia.
  • Si un número es divisor de otro, también lo es de cualquier múltiplo de éste.
  • Si un número es divisor de otro, y éste lo es de un tercero, el primero lo es del tercero.

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Relación de divisibilidad


    (Pág. 45)

     3, 7, 9, 10

     1, 2, 4, 5, 6, 8, 11, 12, 13

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda