Figuras semejantes (2º ESO)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 17:08 16 sep 2017
Coordinador (Discusión | contribuciones)
(Relación entre las áreas y los volúmenes de dos figuras semejantes)
← Ir a diferencia anterior
Revisión de 17:10 16 sep 2017
Coordinador (Discusión | contribuciones)
(Relación entre las áreas y los volúmenes de dos figuras semejantes)
Ir a siguiente diferencia →
Línea 87: Línea 87:
{{Teorema_sin_demo|titulo=Propiedades|enunciado=Si la razón de semejanza entre dos figuras es <math>k\;</math>, entonces la razón entre sus áreas es <math>k^2\;</math> y entre sus volúmenes, <math>k^3\;</math>.}} {{Teorema_sin_demo|titulo=Propiedades|enunciado=Si la razón de semejanza entre dos figuras es <math>k\;</math>, entonces la razón entre sus áreas es <math>k^2\;</math> y entre sus volúmenes, <math>k^3\;</math>.}}
{{p}} {{p}}
-{{Ejemplo_simple|titulo=Ejemplos|contenido=+{{Ejemplo|titulo=Ejercicios resueltos: ''Figuras semejantes''|enunciado=
-#Si un cuadrado tiene 5 cm de lado y el de otro cuadrado mide el doble, 10 cm, entonces el área de éste es el cuádruple de la del primero.+#Comprueba que si un cuadrado tiene 5 cm de lado y el de otro cuadrado mide el doble, 10 cm, entonces el área de éste es el cuádruple de la del primero.
-#Si un cubo tiene 5 cm de arista y la de otro cubo mide el doble, 10 cm, entonces el volumen de éste es 8 veces la del primero.+#Comprueba que si un cubo tiene 5 cm de arista y la de otro cubo mide el doble, 10 cm, entonces el volumen de éste es 8 veces la del primero.
-----+|sol=
'''Solución 1:''' '''Solución 1:'''

Revisión de 17:10 16 sep 2017

Tabla de contenidos

(Pág. 194)

Figuras semejantes

  • Dos figuras son semejantes si tienen la misma forma aunque sus tamaños u orientación sean diferentes.
  • El tener la misma forma lo expresaremos matemáticamente diciendo que los segmentos correspondientes de una y otra figura son proporcionales, es decir, la longitud de uno de ellos se obtiene multiplicando la longitud del correspondiente por una cantidad fija, llamada razón de semejanza.

ejercicio

Propiedades


En dos figuras semejantes se cumple:

  • Un ángulo en una de las figuras es igual al ángulo correspondiente en la otra figura.
  • Una razón en una de las figuras es igual a la razón correspondiente en la otra figura.

ejercicio

Ejemplo 1: Figuras semejantes


Tenemos dibujado en un papel un rectángulo de dimensiones 12 cm x 8 cm. Hacemos una fotocopia reducida y obtenemos otro rectángulo de dimensiones 3 cm x 2 cm.

a) Comprueba que son semejantes y calcula la razón de semejanza.
b) Calcula el procentaje de reducción aplicado en la fotocopia.
c) Comprueba que se cumplen las propiedades de las figuras semejantes relativas a ángulos y razones.

ejercicio

Ejemplo 2: Figuras semejantes


Dos triángulos semejantes tienen una razón de semejanza de 0.75. Si los lados del mayor miden 12, 8 y 16 cm, respectivamente, ¿cuánto miden los lados del menor?

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Figuras semejantes


(Pág. 195)

1, 2

(Pág. 196)

Relación entre las áreas y los volúmenes de dos figuras semejantes

ejercicio

Propiedades


Si la razón de semejanza entre dos figuras es k\;, entonces la razón entre sus áreas es k^2\; y entre sus volúmenes, k^3\;.

ejercicio

Ejercicios resueltos: Figuras semejantes


  1. Comprueba que si un cuadrado tiene 5 cm de lado y el de otro cuadrado mide el doble, 10 cm, entonces el área de éste es el cuádruple de la del primero.
  2. Comprueba que si un cubo tiene 5 cm de arista y la de otro cubo mide el doble, 10 cm, entonces el volumen de éste es 8 veces la del primero.

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Figuras semejantes


(Pág. 196)

1

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda