Plantilla:Sucesión de Fibonacci

De Wikipedia

(Diferencia entre revisiones)
Revisión de 16:09 10 oct 2017
Coordinador (Discusión | contribuciones)

← Ir a diferencia anterior
Revisión de 16:24 10 oct 2017
Coordinador (Discusión | contribuciones)

Ir a siguiente diferencia →
Línea 15: Línea 15:
'''a) Sucesión de Fibonacci:''' '''a) Sucesión de Fibonacci:'''
-[[Imagen:conejos_fibonacci.jpg|right|250px]]+[[Imagen:conejos_fibonacci.jpg|right|350px]]
-*'''Valor inicial''': 1 pareja+*'''Mes 1''': 1 pareja (la pareja acaba de nacer al comenzar el mes 1)
-*'''Mes 1:''' 1 pareja (hasta el segundo mes no se reproduce la primera)+*'''Mes 2:''' 1 pareja (la pareja no es fértil hasta que termine el mes)
-*'''Mes 2:''' 2 parejas (primera vez que se reproduce)+*'''Mes 3:''' 2 parejas (al comenzar el tercer mes se reproduce por primera vez)
-*'''Mes 3:''' 3 parejas (la primera pareja vuelve a reproducirse pero la segunda no lo hace hasta el próximo mes)+*'''Mes 4:''' 3 parejas (la primera pareja vuelve a reproducirse pero la segunda no lo hace hasta el comienzo del próximo mes)
-*'''Mes 4:''' 5 parejas (la primera y la segunda pareja ya se reproducen, la tercera aún no)+*'''Mes 5:''' 5 parejas (la primera y la segunda pareja ya se reproducen, la tercera aún no)
-*'''Mes 5:''' 8 parejas (se reproducen las 3 primeras parejas, las otras dos no)+*'''Mes 6:''' 8 parejas (se reproducen las 3 primeras parejas, las otras dos no)
-*'''Mes 6:''' 13 parejas (se reproducen las 5 parejas de hace 2 meses, pero las 3 nuevas del mes anterior aún no)+*'''Mes 7:''' 13 parejas (se reproducen las 5 parejas de hace 2 meses, pero las 3 nuevas del mes anterior aún no)
Así se obtiene una sucesión en la que cada término se obtiene a partir de la suma de los dos anteriores: Así se obtiene una sucesión en la que cada término se obtiene a partir de la suma de los dos anteriores:

Revisión de 16:24 10 oct 2017

ejercicio

Ejemplo: La sucesión de Fibonacci y el número áureo


El siguiente problema fue propuesto por Fibonacci, matemático italiano del siglo XIII:

"Cuántas parejas de conejos se producirán en un año, comenzando con una pareja única, si cada mes cualquier pareja engendra otra pareja, que se reproduce a su vez desde el segundo més?"

a) Escribe la sucesión cuyos términos son lás parejas de conejos que hay cada més. Esta recibe el nombre de sucesión de Fibonacci.

b) Ahora vas a construir la sucesión que se obtiene al dividir cada término entre el anterior. Esa sucesión verás que se aproxima al número áureo (\phi\;):

\phi = \frac{1 + \sqrt{5}}{2} = 1.618033988...

 

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda