Funciones trigonométricas o circulares (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 07:59 18 dic 2017
Coordinador (Discusión | contribuciones)
(Modelando con funciones trigonométricas)
← Ir a diferencia anterior
Revisión de 08:02 18 dic 2017
Coordinador (Discusión | contribuciones)
(Modelando con funciones trigonométricas)
Ir a siguiente diferencia →
Línea 366: Línea 366:
|titulo1=Ejercicio 4 |titulo1=Ejercicio 4
|duracion=7'44" |duracion=7'44"
-|sinopsis=El día más largo del año en Juneau, Alaska, es el 21 de junio, el cual dura 1096.5 minutos. Medio año después, cuando los días son más cortos, éstos duran alrededor de 382.5 minutos.+|sinopsis=Modelar funciones sinusoidales con desplazamiento de fase:
 + 
 +El día más largo del año en Juneau, Alaska, es el 21 de junio, el cual dura 1096.5 minutos. Medio año después, cuando los días son más cortos, éstos duran alrededor de 382.5 minutos.
Sabiendo que no es un año bisiesto y el día 21 de junio es el día 172 del año, encuentra la función trigonométrica que modele la duración ''L'' del día ''t'' del año. Sabiendo que no es un año bisiesto y el día 21 de junio es el día 172 del año, encuentra la función trigonométrica que modele la duración ''L'' del día ''t'' del año.
Línea 387: Línea 389:
{{AI_Khan {{AI_Khan
|titulo1=Autoevaluación 3 |titulo1=Autoevaluación 3
-|descripcion=Modelar con funciones sinusoidales: desplazamiento de fase.+|descripcion=Modelar con funciones sinusoidales con desplazamiento de fase.
|url1=https://es.khanacademy.org/math/trigonometry/trig-function-graphs/constructing-sinusoids/e/modeling-with-periodic-functions-2 |url1=https://es.khanacademy.org/math/trigonometry/trig-function-graphs/constructing-sinusoids/e/modeling-with-periodic-functions-2

Revisión de 08:02 18 dic 2017

Tabla de contenidos

Funciones trigonométricas

Vamos a estudiar las funciones que se obtienen a partir de las razones trigonométricas de un ángulo x al hacer variar éste. Dicho ángulo se suele expresar en radianes.

Función seno

Se define la función seno como

f(x)=sen(x) \, , \ x \in \mathbb{R}

ejercicio

Propiedades de la función seno


  • Dominio: \mathbb{R}
  • Recorrido: [-1, 1]\,
  • Periodicidad: Es periódica, con período 2 \pi \,.
  • Continuidad: Es continua en su dominio, \mathbb{R}.
  • Simetrías: Es impar, pués sen(-x)=-sen(x)\,
  • Cortes con eje X: \left \{ x=0+ \pi k \, , \ k \in \mathbb{Z} \right \}
  • Máximos: \left \{ x=\pi / 2+2 \pi k \, , \ k \in \mathbb{Z} \right \}
  • Mínimos: \left \{ x=3 \pi /2 +2 \pi k \, , \ k \in \mathbb{Z} \right \}
  • Crecimiento:
    • Crece en los intervalos \big( 3 \pi / 2+2 \pi (k-1) , \, \pi /2 +2 \pi k \big), \ k \in \mathbb{Z}.
    • Decrece en los intervalos \big( \pi / 2+2 \pi k , \, 3 \pi /2 +2 \pi k \big), \ k \in \mathbb{Z}.
Función seno (sinusoide).


Los valores en el eje x están expresados en radianes

Función coseno

Se define la función coseno como

f(x)=cos(x) \, , \ x \in \mathbb{R}

ejercicio

Propiedades de la función coseno


  • Dominio: \mathbb{R}
  • Recorrido: [-1, 1]\,
  • Periodicidad: Es periódica, con período 2 \pi \,.
  • Continuidad: Es continua en su dominio, \mathbb{R}.
  • Simetrías: Es par, pués cos(-x)=cos(x)\,
  • Cortes con eje X: \left \{ x=\pi /2 + \pi k \, , \ k \in \mathbb{Z} \right \}
  • Máximos: \left \{ x=2 \pi k \, , \ k \in \mathbb{Z} \right \}
  • Mínimos: \left \{ x=\pi (2k+1) \, , \ k \in \mathbb{Z} \right \}
  • Crecimiento:
    • Crece en los intervalos \big( \pi (2k-1) , \, 2 \pi k \big), \ k \in \mathbb{Z}.
    • Decrece en los intervalos \big( 2 \pi k , \, \pi (2k+1) \big), \ k \in \mathbb{Z}.
Función coseno (cosinusoide).


Los valores en el eje x están expresados en radianes

Función tangente

Se define la función coseno como

f(x)=tg(x) \, , \quad x \in \mathbb{R}-\left \{ \pi /2 + k \pi \, , \ k  \in \mathbb{Z} \right \}

ejercicio

Propiedades de la función tangente


  • Dominio: \mathbb{R}-\left \{ \pi /2 + k \pi \, , \ k  \in \mathbb{Z} \right \}
  • Recorrido: \mathbb{R}
  • Periodicidad: Es periódica, con período \pi \,.
  • Continuidad: Es continua en su dominio. Tiene discontinuidades en \left \{ x=\pi /2 + k \pi \, , \ k  \in \mathbb{Z} \right \}
  • Simetrías: Es impar, pués tg(-x)=-tg(x)\,
  • Cortes con eje X: \left \{ x=k \pi , \ k \in \mathbb{Z} \right \}
  • Máximos: No tiene
  • Mínimos: No tiene
  • Crecimiento: Creciente en cada intervalo que compone sus dominio.
Función tangente.


Los valores en el eje x están expresados en radianes

Línea media, amplitud y período de las funciones trigonométricas



Transformaciones de funciones trigonométricas



Modelando con funciones trigonométricas

En este apartado vamos a ver cómo se obtiene la expresión analítica de una función trigonométrica que nos permita representar una determinada situación, partiendo de cierta información verbal o gráfica.



Actividades y videotutoriales



Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda