Regla de Ruffini (4ºESO Académicas)
De Wikipedia
Revisión de 08:18 16 sep 2018 Coordinador (Discusión | contribuciones) (→Ejercicios propuestos) ← Ir a diferencia anterior |
Revisión de 08:33 1 oct 2018 Coordinador (Discusión | contribuciones) (→Ejercicios propuestos) Ir a siguiente diferencia → |
||
Línea 37: | Línea 37: | ||
(Pág. 39) | (Pág. 39) | ||
- | [[Imagen:Yellow_star.png|12px]] 3 | + | [[Imagen:Red_star.png|12px]] 3a |
+ | |||
+ | [[Imagen:Yellow_star.png|12px]] 3b | ||
}} | }} | ||
[[Categoría: Matemáticas]][[Categoría: Álgebra]] | [[Categoría: Matemáticas]][[Categoría: Álgebra]] |
Revisión de 08:33 1 oct 2018
Enlaces internos | Para repasar | Enlaces externos |
Indice Descartes Manual Casio | Test de Álgebra | WIRIS Calculadora |
Tabla de contenidos |
Regla de Ruffini
División de un polinomio por (x-a)
Regla de Ruffini
La Regla de Ruffini es un procedimiento que nos permite dividir un polinomio entre un binomio de la forma .
Debemos esta regla al matemático italiano Paolo Ruffini,
Procedimiento:
Vamos a dividir el polinomio
entre el binomio
para obtener el cociente
y el resto .
1. Trazamos dos líneas a manera de ejes. Cogemos los coeficientes de y los escribimos ordenados. Entonces escribimos en la parte inferior izquierda del eje, encima de la línea:
2. Pasamos el coeficiente más pegado a la izquierda, , justo debajo de la línea, para obtener el primero de los coeficientes :
3. Multiplicamos el número más pegado a la derecha debajo de la línea por y lo escribimos sobre la línea en la primera posición de la derecha:
4. Añadimos los dos valores que hemos puesto en la misma columna:
5. Repetimos los pasos 3 y 4 hasta que no tengamos más números:
Ejemplo: Regla de Ruffini
Divide los polinomios usando la regla de Ruffini:
| 7 -5 -4 6 -1 | 2| 14 18 28 68 --|------------------- | 7 9 14 34 |67 |____ El resultado significa que:
|
|
Regla de Ruffini. Ejemplos.
Regla de Ruffini: Método rápido para realizar divisiones de polinomios entre binomios del tipo (x - a). Ejemplos.
La regla de Ruffini nos permite determinar supersónicamente el cociente y el resto de la división entre un polinomio P(x) y el polinomio Q(x) = x - a.
Cómo se aplica la Regla de Ruffini.
División de polinomios por el método de Ruffini para divisores del tipo (x-a).
Ejemplo de división de polinomios usando la regla de Ruffini.
2 ejemplos de división de polinomios usando la regla de Ruffini.
2 ejemplos de división mediante la regla de Ruffini
Otros 2 ejemplos de aplicación de la regla de Ruffini
Divide entre .
a) Divide entre
b) Divide entre
Divide los siguientes polinomios utilizando la regla de Ruffini:
- 1a)
- 1b)
- 1c)
- 1d)
- 1e)
- 1f)
Divide los siguientes polinomios utilizando la regla de Ruffini:
- 1g)
- 1h)
- 1i)
- 1j)
- 1k)
- 1l)
Divide los siguientes polinomios utilizando la regla de Ruffini:
- 2a)
- 2b)
- 2c)
- 2d)
- 2e)
Divide los siguientes polinomios utilizando la regla de Ruffini:
- 2f)
- 2g)
- 2h)
- 2i)
- 2j)
Divide los siguientes polinomios utilizando la regla de Ruffini:
- a)
- b)
- c)
Ejercicios de autoevaluación sobre la regla de Ruffini.
División de un polinomio por (mx+n)
Proposición
Para dividir un polinomio por un binomio del tipo efectuaremos la división por (usando Ruffini pondríamos en el lado izquierdo de la línea vertical), con lo que obtendríamos un cociente y un resto .
Entonces el cociente y el resto de la división del polinomio entre serán:
Ejercicios propuestos
Ejercicios propuestos: Regla de Ruffini |
Teorema del resto
Teorema del Resto
El valor que toma un polinomio, , cuando hacemos , coincide con el resto de la división de entre . Es decir, , donde es el resto de dicha división.
Esto se deduce directamente de una de las propiedades de la división, la que dice que:
donde es el dividendo, el divisor, el cociente y el resto y verificándose además, que el grado de es menor que el grado de .
En efecto, si tomamos el divisor , entonces tiene grado menor que 1 (el grado del resto es 0); es decir, es una constante que podemos llamar , y la fórmula anterior se convierte en:
Tomando el valor se obtiene que:
Ejemplo: Teorema del Resto
Calcula el resto de dividir el polinomio entre
Primer método:
Bastará calcular
Así el resto será
Segundo método:
Usando la regla de Ruffini:
| 1 -3 0 -7 | 2| 2 -2 -4 --|---------------- | 1 -1 -2 |-11 |____Así, el resto de la división es -11, y por el teorema del resto, P(2) = -11.
Teorema del resto. Ejemplos.
Si P(x) es un polinomio de grado no inferior a 1, el resto de la división P(x)/(x-a) es el número P(a) que se obtiene al sustituir "x" por "a" en P(x). La división P(x)/(x-a) es "exacta" si P(a) = 0; y en tal caso se dice que "a" es un "cero" o "raíz" del polinomio P(x), o una solución de la ecuación P(x) = 0.
- Teorema del resto para la división de un polinomio entre un binomio del tipo (ax+b).
- Como ejemplo, también resolveremos los siguientes ejercicios:
- 1) Halla el resto de dividir el polinomio entre el binomio .
- 2) Halla el resto de dividir el polinomio entre el binomio .
Halla el resto de la división del polinomio entre .
Halla el valor de para que la división del polinomio entre sea exacta.
1) Halla el resto de la división del polinomio entre , , y .
2) Determina el valor de k para que el polinomio sea divisible por .
3) Sea . Halla el valor de k para que el resto de la división de entre sea igual a 2.
a) Halla el resto de la división de entre .
b) y c) Otros dos ejercicios de nivel superior.
Ejercicios de autoevaluación sobre el teorema del resto.
Ejercicios propuestos
Ejercicios propuestos: Teorema del resto |