Cálculo de primitivas inmediatas (2ºBach)
De Wikipedia
Revisión de 15:32 15 sep 2019 Coordinador (Discusión | contribuciones) (→Integrales inmediatas) ← Ir a diferencia anterior |
Revisión de 15:42 15 sep 2019 Coordinador (Discusión | contribuciones) (→Integrales inmediatas) Ir a siguiente diferencia → |
||
Línea 192: | Línea 192: | ||
|url1=https://matematicasbachiller.com/videos/2-bachillerato/introduccion-al-calculo-integral/01-calculo-de-primitivas-2/050107-seis-ejercicios-2 | |url1=https://matematicasbachiller.com/videos/2-bachillerato/introduccion-al-calculo-integral/01-calculo-de-primitivas-2/050107-seis-ejercicios-2 | ||
+ | }} | ||
+ | {{Video_enlace_pildoras | ||
+ | |titulo1=Ejercicio 8 | ||
+ | |duracion=10'22" | ||
+ | |sinopsis= | ||
+ | #<math>\int x^2-5x+9 \cdot dx</math> | ||
+ | #<math>\int \cfrac{1}{x^3}+\cfrac{7}{x^2} \cdot dx</math> | ||
+ | #<math>\int \sqrt[4]{x} \cdot dx</math> | ||
+ | #<math>\int 2(2x-8)^6 \cdot dx</math> | ||
+ | #<math>\int x(x^2-8)^3 \cdot dx</math> | ||
+ | #<math>\int \cfrac{x^2}{(x^3+5)^4} \cdot dx</math> | ||
+ | #<math>\int \cfrac{3}{\sqrt{5x}} \cdot dx</math> | ||
+ | |url1=https://youtu.be/H2ghV-JaUgk?list=PLwCiNw1sXMSBA1KORgh0feSngW7ZUWF3b | ||
}} | }} | ||
}} | }} |
Revisión de 15:42 15 sep 2019
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Calculadora |
Integrales inmediatas básicas
Empezaremos viendo aquellas funciones cuyas primitivas son las funciones elementales. Basta con recordar las reglas de derivación que vimos en un tema anterior y que puedes ver en el siguiente enlace: Ver reglas de derivación.
Reglas básicas de integración:
- Integral de un número.
- Integral de una potencia.
Reglas básicas de integración:
- Integral de una potencia (ampliación).
- Integral del logaritmo neperiano.
Reglas básicas de integración:
- Integral de funciones exponenciales.
Reglas básicas de integración:
- Integral de funciones trigonométricas.
Reglas básicas de integración:
- Integral de funciones trigonométricas (ampliación).
Integrales inmediatas
En este apartado estudiaremos las integrales de funciones cuyas primitivas son funciones compuestas. Más concretamente:
Proposición
Demostración:
Es inmediato si a partir de la derivada de la función compuesta
Integrales inmediatas.
Integrales inmediatas (continuación).
Integrales inmediatas (continuación).
Integrales inmediatas
De esta manera tenemos las siguientes integrales inmediatas:
Ejercicios resueltos: Primitivas inmediatas
Primitivas del tipo
- Primitivas del tipo . Ejemplos
- Ejercicios:
- Primitivas del tipo en las que hay que aplicar el binomio de Newton.
- Ejercicios:
- Determine la función "f" tal que: f(0)=0, f'(0)=5, f(0)=1 y f'(x)=x+1
- Determine la primitiva de que pasa por el origen.
Ejercicios resueltos: Primitivas inmediatas
Primitivas del tipo