Regla de Ruffini (4ºESO Académicas)
De Wikipedia
(Diferencia entre revisiones)
Revisión de 08:59 13 ene 2009 Coordinador (Discusión | contribuciones) (→División de un polinomio por (x-a). Regla de Ruffini) ← Ir a diferencia anterior |
Revisión de 09:04 13 ene 2009 Coordinador (Discusión | contribuciones) (→División de un polinomio por (x-a). Regla de Ruffini) Ir a siguiente diferencia → |
||
Línea 205: | Línea 205: | ||
---- | ---- | ||
Divide los polinomios usando la regla de [[Ruffini]]: | Divide los polinomios usando la regla de [[Ruffini]]: | ||
- | :<math> P(x)=7x^4-5x^3-4x^2+6x-1\,\! </math> | + | ::<math> P(x)=7x^4-5x^3-4x^2+6x-1\,\! </math> |
- | :<math> Q(x)=x-2\,\! </math> | + | ::<math> Q(x)=x-2\,\! </math> |
<div class="NavFrame" style="background: white; border: 0px solid #aaaaaa; padding:3px; margin-bottom:0em; margin-left:0em;"> | <div class="NavFrame" style="background: white; border: 0px solid #aaaaaa; padding:3px; margin-bottom:0em; margin-left:0em;"> |
Revisión de 09:04 13 ene 2009
Tabla de contenidos[esconder] |
Cociente de monomios
Entenderemos la división de monomios como una fracción que hay que simplificar, dividiendo los coeficientes y restando los exponentes de las potencias de la misma base.
|
División de polinomios
La división de polinomios tiene la mismas partes que la división aritmética. Dados dos polinomios (dividendo) y
(divisor) de modo que el grado de
sea mayor o igual que el grado de
y el grado de
sea mayor o igual a cero, siempre podremos hallar dos polinomios
(cociente) y
(resto) tales que:

dividendo = divisor × cociente + resto
que también podemos representar como:
- El grado de C(x) está determinado por la diferencia entre los grados de P(x) y Q(x), mientras que el grado de R(x) será, como máximo, un grado menor que Q(x).
- Cuando el resto sea igual a cero diremos que el dividendo es divisible por el divisor, es decir, que la división es exacta.
División de un polinomio por (x-a). Regla de Ruffini
Regla de Ruffini
La Regla de Ruffini nos permite dividir un polinomio entre un binomio de la forma , siendo
un número entero.
Debemos esta regla al matemático italiano Paolo Ruffini,