Plantilla:Raíces: definición y propiedades

De Wikipedia

(Diferencia entre revisiones)

Revisión de 08:38 20 feb 2009

Definición de raíz

Sabemos que 3^2 = 9\;\!. Esta igualdad la podemos expresar de forma similar como \sqrt{9}=3 y se lee 3 es igual a la raíz cuadrada de 9.

En general:

  • Se define la raíz cuadrada de un número a\;\! como otro número b\;\! tal que b^2 =a\;\!, que escribimos simbólicamente: b=\sqrt{a}.
  • Se define la raíz cúbica de un número a\;\! como otro número b\;\! tal que b^3 =a\;\!, que escribimos simbólicamente: b=\sqrt[3]{a}.
  • Igualmente, se define raíz n-sima (n \in \mathbb{N},\ n>1)de un número a\;\! como otro número b\;\! tal que b^n =a\;\!, que escribimos simbólicamente: b=\sqrt[n]{a}.
  • El número a\;\! se llama radicando, el número n\;\! índice y b\;\! es la raíz.

Propiedades de las raíces

  • \sqrt[n]{1}=1 y \sqrt[n]{0}=0, para cualquier valor del índice n\;\!.
  • Si a>0\;\!, \sqrt[n]{a} existe cualquiera que sea el índice n\;\!.
  • Si a<0\;\!, \sqrt[n]{a} sólo existe si el índice n\;\! es impar.
  • Si el índice n\;\! es par y el radicando a>0\;\!, la raíz tiene dos soluciones: una positiva y otra negativa, pero iguales en valor absoluto. Si el índice es impar, siempre tiene una única solución, que tiene el mismo signo que el radicando a\;\!.

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda