Plantilla:Transformaciones elementales de funciones (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 07:29 20 abr 2009
Coordinador (Discusión | contribuciones)
(Actividades)
← Ir a diferencia anterior
Revisión de 07:31 20 abr 2009
Coordinador (Discusión | contribuciones)
(Actividades)
Ir a siguiente diferencia →
Línea 143: Línea 143:
}} }}
==Actividades== ==Actividades==
- +{{Web2
 +|titulo=Transformaciones de funciones
 +|descripcion=Web de D. Manuel Sada Allo.
 +|pagina=
<center><iframe> <center><iframe>
url=http://recursos.pnte.cfnavarra.es/~msadaall/geogebra/transfunciones.htm url=http://recursos.pnte.cfnavarra.es/~msadaall/geogebra/transfunciones.htm
Línea 151: Línea 154:
</iframe></center> </iframe></center>
<center>[http://recursos.pnte.cfnavarra.es/~msadaall/geogebra/transfunciones.htm '''Click''' aquí si no se ve bien la escena]</center> <center>[http://recursos.pnte.cfnavarra.es/~msadaall/geogebra/transfunciones.htm '''Click''' aquí si no se ve bien la escena]</center>
 +
 +}}

Revisión de 07:31 20 abr 2009

Tabla de contenidos

Traslación vertical

Sea f(x)\; una función y k>0\; un número real, entonces la gráfica de la función f(x)+k\; se obtiene a partir de la de f(x)\; desplazándola k\; unidades hacia arriba y la de f(x)-k\; desplazándola k\; unidades hacia abajo.

ejercicio

Actividad Interactiva: Traslación vertical de una función


Actividad 1. Representación gráfica de una función f(x)\; cualquiera y de su transformada f(x) \pm k.

Simetría respecto del eje X

Las gráficas de las funciones f(x)\; y su opuesta, -f(x)\;, son simétricas respecto del eje de abscisas.

ejercicio

Actividad Interactiva: Función simétrica respecto del eje X


Actividad 1. Representación gráfica de una función f(x)\; cualquiera y de su simétrica -f(x)\;.

Dilatación y contracción

  • Si k>1\;, la gráfica de la función k \cdot f(x)\; es una dilatación o estiramiento vertical de la gráfica de f(x)\;.
  • Si 0<k<1\;, la gráfica de la función k \cdot f(x)\; es una contracción o achatamiento vertical de la gráfica de f(x)\;.
  • Si -1<k<0\;, la gráfica de la función k \cdot f(x)\; es la combinacion de una contracción y una simetría respecto del eje X.
  • Si k<-1\;, la gráfica de la función k \cdot f(x)\; es la combinacion de una dilatación y una simetría respecto del eje X.

ejercicio

Actividad Interactiva: Dilatación y contracción de una función


Actividad 1. Representación gráfica de una función f(x)\; cualquiera y de su transformada k \cdot f(x)\;.

Traslación horizontal

Sea f(x)\; una función y k>0\; un número real, entonces la gráfica de la función f(x+k)\; se obtiene a partir de la de f(x)\; desplazándola k\; unidades hacia la izquierda y la de f(x-k)\; desplazándola k\; unidades hacia la derecha.

ejercicio

Actividad Interactiva: Traslación horizontal de una función


Actividad 1. Representación gráfica de una función f(x)\; cualquiera y de su transformada f(x \pm k).

Simetría respecto del eje Y

Las gráficas de las funciones f(x)\; y su opuesta, f(-x)\;, son simétricas respecto del eje de ordenadas.

ejercicio

Actividad Interactiva: Función simétrica respecto del eje Y


Actividad 1. Representación gráfica de una función f(x)\; cualquiera y de su simétrica f(-x)\;.

Actividades

ejercicio

Web: Transformaciones de funciones


Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda