Límite de una sucesión (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 16:57 27 sep 2014
Coordinador (Discusión | contribuciones)
(Videotutoriales sobre límite de sucesiones)
← Ir a diferencia anterior
Revisión de 17:04 27 sep 2014
Coordinador (Discusión | contribuciones)
(Videotutoriales sobre límite de sucesiones)
Ir a siguiente diferencia →
Línea 208: Línea 208:
|duracion=10´35" |duracion=10´35"
|url1=http://matematicasbachiller.com/videos/universidad/sucesiones-y-series/01-sucesiones/0301-ejercicio-3#.VCbrTPl_u2E |url1=http://matematicasbachiller.com/videos/universidad/sucesiones-y-series/01-sucesiones/0301-ejercicio-3#.VCbrTPl_u2E
 +|sinopsis=Videotutorial
 +}}
 +{{p}}
 +{{Video_enlace2
 +|titulo1=Límites infinitos
 +|duracion=21´27"
 +|url1=http://matematicasbachiller.com/videos/universidad/sucesiones-y-series/01-sucesiones/04-limites-infinitos#.VCbsn_l_u2E
 +|sinopsis=Videotutorial
 +}}
 +{{p}}
 +{{Video_enlace2
 +|titulo1=Propiedades aritméticas de los límites
 +|duracion=14´20"
 +|url1=http://matematicasbachiller.com/videos/universidad/sucesiones-y-series/01-sucesiones/05-propiedades-aritmeticas-de-los-limites#.VCbs1fl_u2E
 +|sinopsis=Videotutorial
 +}}
 +{{p}}
 +{{Video_enlace2
 +|titulo1=Indeterminaciones matemáticas
 +|duracion=8´10"
 +|url1=http://matematicasbachiller.com/videos/universidad/sucesiones-y-series/01-sucesiones/06-indeterminaciones-matematicas#.VCbtBfl_u2E
 +|sinopsis=Videotutorial
 +}}
 +{{p}}
 +{{Video_enlace2
 +|titulo1=Infinitos potenciales
 +|duracion=6´54"
 +|url1=http://matematicasbachiller.com/videos/universidad/sucesiones-y-series/01-sucesiones/07-infinitos-potenciales#.VCbtP_l_u2E
 +|sinopsis=Videotutorial
 +}}
 +{{p}}
 +{{Video_enlace2
 +|titulo1=Cociente de infinitos potenciales
 +|duracion=9´09"
 +|url1=http://matematicasbachiller.com/videos/universidad/sucesiones-y-series/01-sucesiones/08-cociente-de-infinitos-potenciales#.VCbtaPl_u2E
 +|sinopsis=Videotutorial
 +}}
 +{{p}}
 +{{Video_enlace2
 +|titulo1=Otros infinitos
 +|duracion=13´01"
 +|url1=http://matematicasbachiller.com/videos/universidad/sucesiones-y-series/01-sucesiones/09-otros-infinitos#.VCbtqPl_u2E
|sinopsis=Videotutorial |sinopsis=Videotutorial
}} }}
[[Categoría: Matemáticas]][[Categoría: Números]] [[Categoría: Matemáticas]][[Categoría: Números]]

Revisión de 17:04 27 sep 2014

Para acercarnos a la idea de límite, vamos a empezar viendo algunas representaciones gráficas de sucesiones

Tabla de contenidos

Representación gráfica de una sucesión

Para representar gráficamente una sucesión a_n\;, construiremos una tabla donde anotaremos el valor de a_n\; para valores distintos valores de n.

Las parejas (n,a_n),\ n=1,\ 2,\ 3,\ \cdots obtenidas en la tabla, son las coordenadas de los puntos de la representación gráfica de la sucesión, que dibujaremos en unos ejes de coordenadas cartesianos.

ejercicio

Ejemplos: Representación gráfica de una sucesión


Representa graficamente las siguientes sucesiones:

a) a_{n} = \cfrac{16}{2^n}
b) a_{n} = n^2-2n\;

Aproximación a la idea de límite de una sucesión

  • Cuando los términos de una sucesión a_n\; se aproximan a un número l \in  \mathbb{R}, decimos que dicha sucesión tiende a l\; o que su límite es l\;. Lo escribiremos simbólicamente:

a_n \rightarrow l   o bien   lim \ a_n = l\;

  • Cuando los términos de una sucesión a_n\; crecen indefinidamente, superando a cualquier número, decimos que dicha sucesión tiende a +\infty \; o que su límite es +\infty \;. Lo escribiremos simbólicamente:

a_n \rightarrow +\infty   o bien  lim \ a_n = +\infty \;

  • Cuando los términos de una sucesión a_n\; decrecen indefinidamente, tomando valores infriores a cuialquier número negativo, decimos que dicha sucesión tiende a -\infty \; o que su límite es -\infty \;. Lo escribiremos simbólicamente:

a_n \rightarrow -\infty   o bien   lim \ a_n = -\infty \;

Sucesiones que no tienen límite

Hay sucesiones que no cumplen ninguna de las tres condiciones expuestas en el apartado anterior. Dichas sucesiones diremos que no tienen límite.

ejercicio

Ejemplo: Sucesión sin límite


La siguiente sucesión no tiene límite

a_n=(-1)^{n} \cdot n

Ejercicios

ejercicio

Ejercicio: Límite de una sucesión


1. Representa gráficamente las siguientes sucesiones e indica si tienen o no límite, calculándolo en su caso:

a) a_n=n^2\;

b) a_n=\cfrac{7n}{n+1}

c) a_n=\cfrac{n^2-6n-1}{5n+1}

d) a_n=(-1)^n \cdot (2n+1)

e) a_n=\cfrac{n^2-2}{2n^2+1}

f) a_n=\cfrac{n^3-15n^2+25}{2n^2-1}

g) a_n=\cfrac{90n+90}{n^2}

h) a_n=\sqrt{4n+5}

i) a_n= \begin{cases} 2, & \mbox{si }n\mbox{ es par} \\ 4, & \mbox{si }n\mbox{ es impar} \end{cases}

j) a_n=\cfrac{(-1)^n \cdot  (n+5)}{n^2}

Videotutoriales sobre límite de sucesiones

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda