Inecuaciones con una incógnita (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 10:13 16 ago 2016
Coordinador (Discusión | contribuciones)
(Inecuaciones cuadráticas con una incógnita)
← Ir a diferencia anterior
Revisión de 10:27 16 ago 2016
Coordinador (Discusión | contribuciones)

Ir a siguiente diferencia →
Línea 14: Línea 14:
{{Inecuaciones lineales con una incógnita}} {{Inecuaciones lineales con una incógnita}}
{{p}} {{p}}
-==Sistema de inecuaciones con una incógnita==+===Ejercicios===
-{{Sistema de inecuaciones con una incógnita}}+
-{{p}}+
-==Ejercicios==+
(pág. 85) (pág. 85)
{{p}} {{p}}
{{ejercicio {{ejercicio
-|titulo=Ejercicios propuestos: ''Inecuaciones de primer grado con una incógnita''+|titulo=Ejercicios propuestos: ''Inecuaciones lineales con una incógnita''
|cuerpo= |cuerpo=
{{ejercicio_cuerpo {{ejercicio_cuerpo
Línea 27: Línea 24:
{{b4}}[[Imagen:red_star.png|12px]]'''1.''' Resuelve estas inecuaciones: {{b4}}[[Imagen:red_star.png|12px]]'''1.''' Resuelve estas inecuaciones:
-{{b4}}{{b4}}a) <math>3x-2 \le 10 \;</math>{{b4}}b) <math>x-2 > 1 \;</math>{{b4}}c) <math>2x+5 \ge 6| \;</math>{{b4}}d) <math>3x+1 \le 15 \; </math>+{{b4}}{{b4}}a) <math>3x-2 \le 10 \;</math>{{b4}}b) <math>x-2 > 1 \;</math>{{b4}}c) <math>2x+5 \ge 6 \;</math>{{b4}}d) <math>3x+1 \le 15 \; </math>
 +|sol=Utiliza Wolfram para comprobar las soluciones:
 +{{widget generico}}
 +}}
 +}}
 +
 +==Sistema de inecuaciones lineales con una incógnita==
 +{{Sistema de inecuaciones con una incógnita}}
 +{{p}}
 +===Ejercicios===
 +(pág. 85)
 +{{p}}
 +{{ejercicio
 +|titulo=Ejercicios propuestos: ''Sistemas de inecuaciones lineales con una incógnita''
 +|cuerpo=
 +{{ejercicio_cuerpo
 +|enunciado=
{{b4}}[[Imagen:red_star.png|12px]]'''2.''' Resuelve estos sistemas de inecuaciones: {{b4}}[[Imagen:red_star.png|12px]]'''2.''' Resuelve estos sistemas de inecuaciones:

Revisión de 10:27 16 ago 2016

Tabla de contenidos

Inecuaciones con una incógnita

(pág. 85)

  • Una inecuación con una incógnita es una desigualdad entre expresiones matemáticas con una sola variable o incógnita.
  • Una solución de una inecuación con una incógnita, x\;, es un valor de la variable x\; que hace que se cumpla la desigualdad.
  • Resolver una inecuación consiste en hallar todas sus soluciones. Habitualmente son infinitas y se expresan mediante intervalos de la recta real, aunque tambien puede ser finitas o no existir.

ejercicio

Resolución de inecuaciones con una incógnita


Para resolver las inecuaciones con una incógnita podemos utilizar dos métodos:

  • El método algebraico que consiste en despejar la incógnita usando las reglas para trabajar con desigualdades antes mencionadas. Se podrá aplicar a las inecuaciones lineales, pero no a las cuadráticas ni a las de grado superior.
  • El método gráfico que se apoya en el estudio del signo de una función polinómica. En este método, primero se pasan todos los términos al lado izquierdo de la inecuación, dejando el lado derecho cero. A continuación, se estudia el signo del polinomio que queda en el lado izquierdo. Se podrá aplicar a las tanto a las inecuaciones lineales como a las cuadráticas y de grado superior.

Inecuaciones lineales con una incógnita

Una inecuación lineal con una incógnita es una inecuación, en la que las expresiones matemáticas que intervienen en la desigualdad, son polinomios de primer grado en una sola variable. En consecuencia, puede ponerse, mediante transformaciones, de alguna de estas formas:

ax+b<0 \ , \quad ax+b \le 0  \ , \quad ax+b>0 \ , \quad ax+b \ge 0 \qquad (a \ne 0)

donde a,b \in \mathbb{R} son los coeficientes y x \; es la variable.

Resolución de una inecuación lineal con una incógnita

Método algebraico de resolución

El método algebraico aplica las anteriores transformaciones para conseguir dejar despejada la incógnita.

ejercicio

Ejemplo: Inecuaciones lineales con una incógnita (método algebraico)


Resuelve la siguiente inecuación:

-3x+2<5\;

Método gráfico de resolución

ejercicio

Inecuaciones lineales con una incógnita (método gráfico)


Las soluciones de una inecuación lineal con una incógnita son los puntos de la semirrecta que se encuentra a uno de los dos lados del punto de corte de la recta y=ax+b \; con el eje de abscisas, es decir del punto x=-\cfrac{b}{a}.

En una de las semirrectas con origen ese punto se cumple la condición ax+b > 0\; y en la otra, la condición ax-b < 0\;.

Así, para determinar la semirrecta solución, basta con fijarse en los valores de la variable x para los que la recta y=ax+b \;está por encima o por debajo del eje de abscisas.

Si la inecuación no es estricta, el punto del extremo de la semirrecta, x=-\cfrac{b}{a}, es también solución, ya que para él se verifica la igualdad.

Ejercicios

(pág. 85)

ejercicio

Ejercicios propuestos: Inecuaciones lineales con una incógnita


    1. Resuelve estas inecuaciones:

        a) 3x-2 \le 10 \;    b) x-2 > 1 \;    c) 2x+5 \ge 6 \;    d) 3x+1 \le 15 \;

Sistema de inecuaciones lineales con una incógnita

Para resolver un sistema de inecuaciones con una incógnita, hay que resolver cada inecuación por separado y finalmente seleccionar la solución común a ambas (intersección de los conjuntos solución de ambas).

ejercicio

Resolución de sistemas de inecuaciones con una incógnita


Resuelve el siguiente sistema de inecuaciones:

\begin{cases} 2x-6 & < 0 \\ \; \, x+2 & \ge 0 \end{cases}

Ejercicios

(pág. 85)

ejercicio

Ejercicios propuestos: Sistemas de inecuaciones lineales con una incógnita


    2. Resuelve estos sistemas de inecuaciones:

        a) \begin{cases} 3x-2 & \le 10 \\ \; \, x-2 & > 1 \end{cases}    b) \begin{cases} 2x+5 & \ge 6 \\ 3x+1 & \le 15 \end{cases}    

Inecuaciones cuadráticas con una incógnita

(pág. 86)

Una inecuación cuadrática con una incógnita es una inecuación en la que las expresiones matemáticas que intervienen en la desigualdad, son polinomios de segundo grado en una sola variable. En consecuencia, puede ponerse, mediante transformaciones, de alguna de estas formas:

ax^2+bx+c<0 \ , \quad ax^2+bx+c \le 0  \ , \quad ax^2+bx+c>0 \ , \quad ax^2+bx+c \ge 0 \qquad (a \ne 0)

Resolución de inecuaciones cuadráticas con una incógnita

Para resolver estas inecuaciones usaremos el método gráfico. Este método requiere que el miembro de la derecha de la inecuación sea cero, lo cual siempre se puede conseguir mediante transformaciones.

Inecuaciones lineales con dos incógnitas (Para ampliar)

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda