Plantilla:Divisibilidad de polinomios

De Wikipedia

(Diferencia entre revisiones)
Revisión de 16:55 15 ago 2016
Coordinador (Discusión | contribuciones)
(Polinomios irreducibles)
← Ir a diferencia anterior
Revisión de 18:33 28 ago 2016
Coordinador (Discusión | contribuciones)
(Polinomios múltiplos y divisores)
Ir a siguiente diferencia →
Línea 1: Línea 1:
===Polinomios múltiplos y divisores=== ===Polinomios múltiplos y divisores===
-La divisibilidad en el conjunto de los polinomios es muy similar a la .+ 
-{{p}}+
{{Caja_Amarilla|texto=Un polinomio <math>D(x)\,</math> es '''divisor''' de otro, <math>P(x)\,</math> y lo representaremos por <math>P(x)|Q(x)\;</math>, si la división <math>P(x):\,D(x)\,</math> es exacta. Es decir, cuando {{Caja_Amarilla|texto=Un polinomio <math>D(x)\,</math> es '''divisor''' de otro, <math>P(x)\,</math> y lo representaremos por <math>P(x)|Q(x)\;</math>, si la división <math>P(x):\,D(x)\,</math> es exacta. Es decir, cuando
{{p}} {{p}}
Línea 14: Línea 13:
La divisibilidad de polinomios es semejante a la [[Divisibilidad|divisibilidad con números enteros]]. Asimismo, la factorización de polinomios equivale a la descomposición de un número en factores primos, y los conceptos de '''máximo común divisor''', '''mínimo común múltiplo''' e '''irreducibilidad''' son similares a los correspondientes conceptos numéricos. La divisibilidad de polinomios es semejante a la [[Divisibilidad|divisibilidad con números enteros]]. Asimismo, la factorización de polinomios equivale a la descomposición de un número en factores primos, y los conceptos de '''máximo común divisor''', '''mínimo común múltiplo''' e '''irreducibilidad''' son similares a los correspondientes conceptos numéricos.
{{p}} {{p}}
 +
===Polinomios irreducibles=== ===Polinomios irreducibles===
{{Caja_Amarilla|texto=Un polinomio <math>P(x)\,</math> es '''irreducible''' cuando ningún polinomio de grado inferior es divisor suyo.}} {{Caja_Amarilla|texto=Un polinomio <math>P(x)\,</math> es '''irreducible''' cuando ningún polinomio de grado inferior es divisor suyo.}}

Revisión de 18:33 28 ago 2016

Polinomios múltiplos y divisores

Un polinomio D(x)\, es divisor de otro, P(x)\, y lo representaremos por P(x)|Q(x)\;, si la división P(x):\,D(x)\, es exacta. Es decir, cuando

P(x)=\,D(x)\cdot C(x)\,

En tal caso, diremos que P(x)\, es divisible por Q(x)\,. También diremos que P(x)\, es un múltiplo de D(x)\,.

La divisibilidad de polinomios es semejante a la divisibilidad con números enteros. Asimismo, la factorización de polinomios equivale a la descomposición de un número en factores primos, y los conceptos de máximo común divisor, mínimo común múltiplo e irreducibilidad son similares a los correspondientes conceptos numéricos.

Polinomios irreducibles

Un polinomio P(x)\, es irreducible cuando ningún polinomio de grado inferior es divisor suyo.

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda