Límite de una sucesión (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 19:19 1 sep 2016
Coordinador (Discusión | contribuciones)
(Ejercicios)
← Ir a diferencia anterior
Revisión de 19:28 1 sep 2016
Coordinador (Discusión | contribuciones)
(Ejercicios)
Ir a siguiente diferencia →
Línea 175: Línea 175:
===Ejercicios=== ===Ejercicios===
-(pág. 59) 
{{p}} {{p}}
{{Ejemplo|titulo=Ejercicios resueltos: ''Aproximación a la idea de límite de una sucesión'' {{Ejemplo|titulo=Ejercicios resueltos: ''Aproximación a la idea de límite de una sucesión''
Línea 222: Línea 221:
}} }}
{{p}} {{p}}
 +(pág. 63)
{{ejercicio {{ejercicio
|titulo=Ejercicios propuestos: ''Aproximación a la idea de límite de una sucesión'' |titulo=Ejercicios propuestos: ''Aproximación a la idea de límite de una sucesión''
Línea 235: Línea 235:
{{b4}}{{b4}}c) <math>c_n=3-2^n \;</math> {{b4}}{{b4}}c) <math>c_n=3-2^n \;</math>
-{{b4}}{{b4}}d) <math>c_n=5- \frac{1}{n^3} \;</math>+{{b4}}{{b4}}d) <math>d_n=5- \frac{1}{n^3} \;</math>
<br> <br>
Línea 244: Línea 244:
{{b4}}{{b4}}b) <math>b_n=(-1)^n \cdot \frac{n}{n+4}</math> {{b4}}{{b4}}b) <math>b_n=(-1)^n \cdot \frac{n}{n+4}</math>
-{{b4}}{{b4}}c) <math>c_n=(-1)^n \cdot n</math>+{{b4}}{{b4}}c) <math>c_n=(-1)^n \cdot n^2</math>
-{{b4}}{{b4}}d) <math>c_n=(-1)^n \cdot \frac{2}{n^2}</math>+{{b4}}{{b4}}d) <math>d_n=(-1)^n \cdot \frac{2}{n^2}</math>
{{p}} {{p}}
|sol=Utiliza Wolfram para comprobar las soluciones. |sol=Utiliza Wolfram para comprobar las soluciones.

Revisión de 19:28 1 sep 2016

Para acercarnos a la idea de límite, vamos a empezar viendo algunas representaciones gráficas de sucesiones

Tabla de contenidos

Representación gráfica de una sucesión

(pág. 61)

Para representar gráficamente una sucesión a_n\;, construiremos una tabla donde anotaremos el valor de a_n\; para distintos valores de n.

Las parejas (n,a_n),\ n=1,\ 2,\ 3,\ \cdots obtenidas en la tabla, son las coordenadas de los puntos de la representación gráfica de la sucesión, que dibujaremos en unos ejes de coordenadas cartesianos.

ejercicio

Ejercicios resueltos: Representación gráfica de una sucesión


Representa graficamente las siguientes sucesiones:
a) a_{n} = \cfrac{5n}{n+3}

b) a_{n} = n^2-2n\;

Observa que, en ambos ejemplos, los valores obtenidos cuando n es pequeño, no son representativos del valor del límite. Por tanto, el valor del límite debe deducirse tomando valores de n suficientemente grandes.

Ejercicios

wolfram

Actividad: Representación gráfica y límite de una sucesión


1. Dada la sucesión a_n=-n^2 \;

a) Elabora una tabla de valores para n=1,2,...,10.
b) Representa gráficamente los puntos de esa tabla.
c) Calcula lim \ -n^2


2. Dada la sucesión a_n={1 \over n} \;

a) Elabora una tabla de valores para n=1,2,...,10.
b) Representa gráficamente los puntos de esa tabla.
c) Calcula lim \ {1 \over n}

(pág. 61)

ejercicio

Ejercicios propuestos: Límite de una sucesión


    1. Representa gráficamente la sucesión a_n=\cfrac{4n+10}{2n-1} y asígnale un valor a su límite.

    2. Representa gráficamente la sucesión b_n=\cfrac{n^2}{4}-2n+3 y asígnale un valor a su límite.

    3. Representa gráficamente la sucesión c_n=(-1)^n \cdot n y describe su comportamiento. ¿Qué puede decirse sobre lim \, c_n \;?

Aproximación a la idea de límite de una sucesión

(pág. 58)

  • Cuando los términos de una sucesión a_n\; se aproximan a un número l \in  \mathbb{R}, decimos que dicha sucesión tiende a l\; o que su límite es l\;. Diremos que la sucesión es convergente. Lo escribiremos simbólicamente:

lim \ a_n = l\;

  • Cuando los términos de una sucesión a_n\; superan a cualquier número "k" tan grande como queramos, al darle a "n" valores suficientemente grandes, decimos que dicha sucesión tiende a +\infty \; o que su límite es +\infty \;. Diremos que la sucesión es divergente. Lo escribiremos simbólicamente:

lim \ a_n = +\infty \;

  • Cuando los términos de una sucesión a_n\; toman valores inferiores a cualquier número "k" negativo tan pequeño como queramos, al darle a "n" valores suficientemente grandes, decimos que dicha sucesión tiende a -\infty \; o que su límite es -\infty \;. Diremos que la sucesión es divergente. Lo escribiremos simbólicamente:

lim \ a_n = -\infty \;

Sucesiones que no tienen límite

(pág. 58)

Hay sucesiones que no cumplen ninguna de las tres condiciones expuestas en el apartado anterior. Dichas sucesiones diremos que no tienen límite.

ejercicio

Ejemplo: Sucesión oscilante


La siguiente sucesión no tiene límite
a_n=(-1)^{n+1} \cdot n

Ejercicios

ejercicio

Ejercicios resueltos: Aproximación a la idea de límite de una sucesión


1. Estudiar el comportamiento de las siguientes sucesiones para valores de n avanzados e indicar su límite:
a) a_n=3+\frac{10}{n}
b) b_n=\frac{n^2-n}{2}


2. Comprobar si las siguientes sucesiones tienen límite:
a) a_n=(-3)^n \;
b) c_n=\frac{(-1)^n}{n}

(pág. 63)

ejercicio

Ejercicios propuestos: Aproximación a la idea de límite de una sucesión


    1. Estudiar el comportamiento de las siguientes sucesiones para valores de n avanzados e indicar su límite:

        a) a_n=\frac{2n-3}{6} \;

        b) b_n=\frac{2n-3}{n+5}

        c) c_n=3-2^n \;

        d) d_n=5- \frac{1}{n^3} \;

    2. Comprobar si las siguientes sucesiones tienen límite:

        a) a_n=-\frac{2}{n^2} \;

        b) b_n=(-1)^n \cdot \frac{n}{n+4}

        c) c_n=(-1)^n \cdot n^2

        d) d_n=(-1)^n \cdot \frac{2}{n^2}

Ejercicios

ejercicio

Ejercicio: Límite de una sucesión


1. Representa gráficamente las siguientes sucesiones e indica si tienen o no límite, calculándolo en su caso:

a) a_n=n^2\;

b) b_n=\cfrac{7n}{n+1}

c) c_n=\cfrac{n^2-6n-1}{5n+1}

d) d_n=(-1)^n \cdot (2n+1)

e) e_n=\cfrac{n^2-2}{2n^2+1}

f) f_n=\cfrac{n^3-15n^2+25}{2n^2-1}

g) g_n=\cfrac{90n+90}{n^2}

h) h_n=\sqrt{4n+5}

i) i_n= \begin{cases} 2, & \mbox{si }n\mbox{ es par} \\ 4, & \mbox{si }n\mbox{ es impar} \end{cases}

j) j_n=\cfrac{(-1)^n \cdot  (n+5)}{n^2}

Videotutoriales (Ampliación)

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda