Plantilla:Fracciones algebraicas

De Wikipedia

(Diferencia entre revisiones)
Revisión de 16:54 9 sep 2016
Coordinador (Discusión | contribuciones)
(Cociente de fracciones algebraicas)
← Ir a diferencia anterior
Revisión de 16:55 9 sep 2016
Coordinador (Discusión | contribuciones)
(Videotutoriales)
Ir a siguiente diferencia →
Línea 154: Línea 154:
|duracion=4´47" |duracion=4´47"
|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/13-polinomios/09-fracciones-algebraicas#.VCMKYhZ8HA8 |url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/13-polinomios/09-fracciones-algebraicas#.VCMKYhZ8HA8
-|sinopsis=Si P(x) y Q(x) son polinomios y Q(x) no es el polinomio nulo, llamamos fracción algebraica a toda expresión de la forma P(x)/Q(x). Las fracciones algebraicas A(x)/B(x) y C(x)/D(x) se dicen equivalentes si A(x).D(x) = C(x).D(x), y se escribe A(x)/B(x) = C(x)/D(x). Si el numerador y el denominador de una fracción algebraica se multiplican por un polinomio no nulo, resulta una fracción algebraica equivalente. Si el numerador y el denominador de una fracción algebraica son divisibles por un mismo polinomio, y se dividen, resulta una fracción algebraica equivalente, diciéndose que la primera fracción algebraica se ha "simplificado".+|sinopsis=
 +*Si P(x) y Q(x) son polinomios y Q(x) no es el polinomio nulo, llamamos fracción algebraica a toda expresión de la forma P(x)/Q(x).
 +*Las fracciones algebraicas A(x)/B(x) y C(x)/D(x) se dicen equivalentes si A(x).D(x) = C(x).D(x), y se escribe A(x)/B(x) = C(x)/D(x).
 +*Si el numerador y el denominador de una fracción algebraica se multiplican por un polinomio no nulo, resulta una fracción algebraica equivalente.
 +*Si el numerador y el denominador de una fracción algebraica son divisibles por un mismo polinomio, y se dividen, resulta una fracción algebraica equivalente, diciéndose que la primera fracción algebraica se ha "simplificado".
}} }}
{{p}} {{p}}

Revisión de 16:55 9 sep 2016

Tabla de contenidos

Fracción algebraica

Una fracción algebraica es una expresión fraccionaria en la que numerador y denominador son polinomios, siendo el denominador no nulo.

\cfrac{P(x)}{Q(x)} ~, \quad Q(x) \ne 0

Las fracciones algebraicas tienen un comportamiento similar a las fracciones niuméricas a la hora de opera con ellas.

Operaciones con fracciones algebraicas

Simplificar fracciones algebraicas

Para simplificar fracciones algebraicas, se factorizan numerador y denominador y se simplifican los factores comunes. La fracción algebraica obtenida se dice que es equivalente a la de partida.

ejercicio

Ejemplos: Simplificar fracciones algebraicas


Simplifica: \cfrac {4x(x-2)^2}{8x^2(x-2)}

wolfram

Actividad: Simplificación de fracciones algebraicas


Simplifica:
a) \cfrac{2x^2-2x}{4x^3-2x^2}


b) \cfrac{x^3(x^2-4)}{2x^2-4x}

Suma y resta de fracciones algebraicas

Para sumar y restar procederemos de forma similar que con fracciones de números enteros, reduciendo primero a común denominador.

ejercicio

Ejemplos: Suma y resta de fracciones algebraicas


Opera: \cfrac {2}{x-3} + \cfrac {5}{x}

Producto de fracciones algebraicas

Para multiplicar fracciones algebraicas procederemos igual que con fracciones, multiplicando los numeradores y los denominadores, aunque antes de multiplicar debemos simplificar, si se puede.

ejercicio

Ejemplos: Producto de fracciones algebraicas


Opera: \cfrac {2x}{x-1} \cdot \cfrac {3x+5}{x^2}

Cociente de fracciones algebraicas

Para dividir fracciones algebraicas procederemos igual que con fracciones, haciendo el producto cruzado de numeradores y denominadores, aunque antes de multiplicar debemos simplificar, si se puede.

ejercicio

Ejemplos: Cociente de fracciones algebraicas


Opera: \cfrac{2x}{x+1}:\cfrac{x^2}{x-2}

Ejercicios

ejercicio

Ejercicios propuestos: Fracciones algebraicas


(Pág. 77)
3, 5
1, 2, 4

Videotutoriales

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda