Fórmulas trigonométricas (1ºBach)
De Wikipedia
Revisión de 17:31 28 sep 2016 Coordinador (Discusión | contribuciones) (→Razones trigonométricas de la suma de dos ángulos) ← Ir a diferencia anterior |
Revisión de 17:32 28 sep 2016 Coordinador (Discusión | contribuciones) (→Razones trigonométricas de la suma de dos ángulos) Ir a siguiente diferencia → |
||
Línea 9: | Línea 9: | ||
{{Teorema|titulo=Razones trigonométricas de la suma de dos ángulos | {{Teorema|titulo=Razones trigonométricas de la suma de dos ángulos | ||
|enunciado= | |enunciado= | ||
- | :'''I.1:'''{{b4}}<math>sen \, (\alpha + \beta) = sen \, \alpha \cdot cos \, \beta + cos \, \alpha \cdot sen \, \beta</math> | + | '''I.1:'''{{b4}}<math>sen \, (\alpha + \beta) = sen \, \alpha \cdot cos \, \beta + cos \, \alpha \cdot sen \, \beta</math> |
- | :'''I.2:'''{{b4}}<math>cos \, (\alpha + \beta) = cos \, \alpha \cdot cos \, \beta - sen \, \alpha \cdot sen \, \beta</math> | + | '''I.2:'''{{b4}}<math>cos \, (\alpha + \beta) = cos \, \alpha \cdot cos \, \beta - sen \, \alpha \cdot sen \, \beta</math> |
- | :'''I.3:'''{{b4}}{{sube|porcentaje=+10%|contenido=<math>tg \, (\alpha + \beta) = \frac{tg \, \alpha + tg \, \beta}{1 - tg \, \alpha \cdot tg \, \beta}</math>}} | + | '''I.3:'''{{b4}}{{sube|porcentaje=+10%|contenido=<math>tg \, (\alpha + \beta) = \frac{tg \, \alpha + tg \, \beta}{1 - tg \, \alpha \cdot tg \, \beta}</math>}} |
|demo=[[Imagen:senosuma.png|right|250px]] | |demo=[[Imagen:senosuma.png|right|250px]] | ||
'''I.1:''' | '''I.1:''' | ||
Línea 62: | Línea 62: | ||
|titulo=Ejemplo: ''Razones trigonométricas de la suma de dos ángulos'' | |titulo=Ejemplo: ''Razones trigonométricas de la suma de dos ángulos'' | ||
|enunciado={{p}} | |enunciado={{p}} | ||
- | :Calcula el valor exacto de {{sube|porcentaje=15%|contenido=<math>sen \, 75^\circ \,</math>}} (sin calculadora) | + | Calcula el valor exacto de {{sube|porcentaje=15%|contenido=<math>sen \, 75^\circ \,</math>}} (sin calculadora) |
|sol= | |sol= | ||
- | :<math>sen \, 75^\circ= sen \, (45^\circ + 30^\circ)=sen \, 45^\circ \cdot cos \, 30^\circ + cos \, 45^\circ \cdot sen \, 30^\circ=</math> | + | <math>sen \, 75^\circ= sen \, (45^\circ + 30^\circ)=sen \, 45^\circ \cdot cos \, 30^\circ + cos \, 45^\circ \cdot sen \, 30^\circ=</math> |
{{p}} | {{p}} | ||
- | :<math>= \cfrac{\sqrt{2}}{2} \cdot \cfrac{\sqrt{3}}{2}+ \cfrac{\sqrt{2}}{2} \cdot \cfrac{1}{2}=\cfrac{\sqrt{2} \cdot (\sqrt{3}+1)}{4}</math> | + | <math>= \cfrac{\sqrt{2}}{2} \cdot \cfrac{\sqrt{3}}{2}+ \cfrac{\sqrt{2}}{2} \cdot \cfrac{1}{2}=\cfrac{\sqrt{2} \cdot (\sqrt{3}+1)}{4}</math> |
}} | }} | ||
{{p}} | {{p}} |
Revisión de 17:32 28 sep 2016
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
Razones trigonométricas de la suma de dos ángulos
Razones trigonométricas de la suma de dos ángulos
I.1:
I.2:
I.3:
Videotutorial.
Ejemplo: Razones trigonométricas de la suma de dos ángulos
Calcula el valor exacto de (sin calculadora)
Seno, coseno y tangente de la suma de tres ángulos.
Videotutorial.
Videotutorial.
Razones trigonométricas de la diferencia de dos ángulos
Razones trigonométricas de la diferencia de dos ángulos
- II.1:
- II.2:
- II.3:
Para las demostraciones basta sustituir por y aplicar las fórmulas de la suma (I.1, I.2 y I.3) y tener en cuenta las relaciones entre las razones trigonométricas de un ángulo y su opuesto:
Videotutorial.
Ejemplo: Razones trigonométricas de la diferencia de dos ángulos
- Calcula el valor exacto de (sin calculadora)
Razones trigonométricas del ángulo doble
Razones trigonométricas del ángulo doble
- III.1:
- III.2:
- III.3:
Basta utilizar las fórmulas de la suma (I.1, I.2 y I.3) y hacer .
Ejemplo: Razones trigonométricas del ángulo doble
- Calcula el valor de a partir de las razones trigonométricas de 60º.
Razones trigonométricas del ángulo mitad
Razones trigonométricas del ángulo mitad
- IV.1:
- IV.2:
- IV.3:
Teniendo en cuenta que y utilizando la fórmula III.2 del coseno del ángulo doble, tenemos:
que combinado con la fórmula fundamental, nos da el siguiente sistema:
Sumando y restando ambas ecuaciones, tenemos las siguientes expresiones:
De estas igualdades se despejan y , y a partir de ellos, se obtiene el valor de .
Videotutorial.
Ejemplo: Razones trigonométricas del ángulo mitad
- Calcula el valor exacto de (sin calculadora).
Videotutorial.
Videotutorial.
Transformaciones de sumas y diferencias de senos y cosenos en productos
Transformaciones de sumas en productos
- V.1:
- V.2:
- V.3:
- V.4:
V.1 y V.2:
Partiendo de las expresiones del I.1 y II.1 del seno de una suma y de una diferencia:
- I.1:
- II.1:
Sumando y restando ambas expresiones, obtenemos:
- Sumando: [1]
- Restando: [2]
Hacemos los siguientes cambios de variable:
Resolviendo este sistema:
que sustituidas en [1] y [2] nos da V.1 y V.2.
Videotutorial.