Plantilla:Definición de función

De Wikipedia

(Diferencia entre revisiones)
Revisión de 18:33 2 nov 2016
Coordinador (Discusión | contribuciones)
(Formas de expresar una función)
← Ir a diferencia anterior
Revisión de 18:43 2 nov 2016
Coordinador (Discusión | contribuciones)
(Formas de expresar una función)
Ir a siguiente diferencia →
Línea 30: Línea 30:
|enunciado= |enunciado=
-En la actividad anterior hemos trabajado con la función y=0.30x:+En las actividades anteriores hemos trabajado con la función y=0.30x:
:a) Obtén la tabla para x=0 hasta x=7. :a) Obtén la tabla para x=0 hasta x=7.

Revisión de 18:43 2 nov 2016

Concepto de función

  • Una función es una relación entre dos variables (por ejemplo, x\; e y\;) que a cada valor de x\; le asigna un único valor de y\;.
  • La variable x\; se llama variable independiente y la variable y\; se llama variable dependiente, porque su valor depende de x\;.
  • Se dice que y\; es función de x\; y lo representamos por y = f(x)\;\!. También se dice que y\; es la imagen de x\; mediante la función f\;.

En los siguientes videos se explican los conceptos básicos sobre funciones que trataremos a lo largo de este tema.

Formas de expresar una función

Hay varias formas de expresar una función:

  • Mediante un enunciado que explique la relación que existe entre las variables.
  • Mediante una ecuación que relacione las variables.
  • Mediante una tabla que contenga los valores de las variables, emparejados.
  • Mediante una gráfica, representada en unos ejes cartesianos con una escala adecuada. Sobre el eje horizontal (eje de abscisas) representamos la variable independiente x, y sobre el eje vertical (eje de ordenadas) la variable dependiente y\;. Cada punto de la gráfica es generado por una pareja de valores x\; e y\;, que son sus coordenadas (x,y)\;, su abcisa y su ordenada.

Veamos unos ejemplos:

Plantilla:AI: Formas de expresar una función

En la actividad anterior hemos podido ver que:

La variable independiente puede ser:

  • Discreta: Si entre dos valores de la variable hay solo un número finito de valores que puede tomar. Su gráfica está formada por puntos separados.
  • Continua: Si entre dos valores de la variable hay infinitos valores que puede tomar. Su gráfica está formada por trazos.

wolfram

Actividad: Tablas


En las actividades anteriores hemos trabajado con la función y=0.30x:

a) Obtén la tabla para x=0 hasta x=7.
b) Dibuja la gráfica.

Ejercicios

ejercicio

Ejercicio: Funciones y gráficas


1. La siguiente gráfica describe el vuelo de un águila desde que sale del nido hasta que vuelve a él con una presa que caza durante el trayecto.

a) ¿Cuáles son las variables relacionadas?
b) ¿Qué representa cada cuadrito en cada eje?
c) ¿A qué altura se encuentra el nido?
d) ¿Cuánto dura el vuelo y cuando caza a la presa?
e) ¿Qúe altura máxima alcanza el águila en su vuelo?. ¿Y la mínima?
f) ¿Qué ocurre entre el segundo 50 y 80?

2. Poner una anuncio por palabras cuesta una cantidad fija de 0.50 € y 0.05 € por cada palabra.

a) Haz una tabla de la función "número de palabras-precio".
b) Representa gráficamente los resultados del apartado a).
c) ¿Cómo es la variable independiente: continua o discreta?
d) Encuentra una fórmula que exprese esta función.

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda