Plantilla:Límite de una función (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 09:36 17 dic 2016
Coordinador (Discusión | contribuciones)
(Límite de de una función en un punto)
← Ir a diferencia anterior
Revisión de 09:39 17 dic 2016
Coordinador (Discusión | contribuciones)
(Límite de de una función en un punto)
Ir a siguiente diferencia →
Línea 63: Línea 63:
|titulo1=Límite de una función en un punto |titulo1=Límite de una función en un punto
|duracion=28'30" |duracion=28'30"
-|sinopsis={{p}}+|sinopsis=En este vídeo hablamos de los dos límites laterales de una función "f" en un punto "c" (límite de "f" en "c" por la izquierda y límite de "f" en "c" por la derecha), interpretándolos en términos geométricos. Si dichos dos límites laterales de "f" en "c" son iguales a "L", se dice que "L" es el límite de "f" en "c".
 + 
*Conceptos de límite de una función por la derecha y por la izquierda de un punto. *Conceptos de límite de una función por la derecha y por la izquierda de un punto.
*Concepto de límite de una función en un punto. *Concepto de límite de una función en un punto.

Revisión de 09:39 17 dic 2016

Tabla de contenidos

Límite de de una función en un punto

El concepto de límite es la base para poder abordar el concepto de continuidad y , más adelante, el de derivabilidad de una función. Es pués, de vital interés, tener bien claro este concepto.

  • Decimos que x\; tiende a a\; por la izquierda (x \rightarrow a^-) cuando x\; toma valores menores que a\;, cada vez más próximos a a\;.
  • Decimos que x\; tiende a a\; por la derecha (x \rightarrow a^+) cuando x\; toma valores mayores que a\;, cada vez más próximos a a\;.
  • Decimos que x\; tiende a a\; (x \rightarrow a) cuando x\; toma valores cada vez más próximos a a\;.

Dada una función f(x)\;, cuando la variable independiente x\; se aproxima a un cierto punto a\;, ya sea por la derecha o por la izquierda, f(x)\; va tomando valores que pueden aproximarse o no a un cierto punto. Diremos que:

  • Una función f(x)\; tiene límite por la izquierda en un punto a\;, si existe un número L_1 \in \mathbb{R}, de manera que cuando x \rightarrow a^-\;, los correspondientes valores f(x) \rightarrow L_1. Lo representaremos:
\lim_{x \to a^-} f(x)=L_1

  • Una función f(x)\; tiene límite por la derecha en un punto a\;, si existe un número L_2 \in \mathbb{R}, de manera que cuando x \rightarrow a^+\;, los correspondientes valores f(x) \rightarrow L_2. Lo representaremos:
\lim_{x \to a^+} f(x)=L_2

  • Una función f(x)\; tiene límite en un punto a\;, si existe un número L \in \mathbb{R} de manera que

\lim_{x \to a^-} f(x)=\lim_{x \to a^+} f(x)=L

     y lo representaremos:

\lim_{x \to a} f(x)=L

     Nótese que aunque existan los límites laterales, si estos no coinciden, el límite no existe.

Límites infinitos. Asíntotas verticales

El concepto de límite visto en el apartado anterior puede extenderese al caso en que, al aproximarnos al punto a\;, la función se aproxime a +\infty ó -\infty.

  • Una función f(x)\; tiende a +\infty por la izquierda de un punto a\;, si f(x)\; se aproxima a valores positivos cada vez más grandes y no acotables, cuando x \rightarrow a^-\;. Lo representaremos:
\lim_{x \to a^-} f(x)=+\infty

  • Una función f(x)\; tiende a +\infty por la derecha de un punto c\;, si f(x)\; se aproxima a valores positivos cada vez más grandes y no acotables, cuando x \rightarrow c^+\;. Lo representaremos:
\lim_{x \to c^+} f(x)=+\infty

  • Una función f(x)\; tiende a +\infty en un punto c\;, si
\lim_{x \to a^-} f(x)=\lim_{x \to a^+} f(x)=+\infty

     y lo representaremos:

\lim_{x \to a} f(x)=+\infty

  • De forma análoga se puede definir la tendencia a -\infty si cambiamos la frase "se aproxima a valores positivos cada vez más grandes y no acotables" por "se aproxima a valores negativos cada vez más pequeños y no acotables", en los tres casos.
  • En todos estos casos diremos que la función tiene una asíntota vertical en el punto x=a\;.

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Límite de una función en un punto


(Pág. 276)

1

Continuidad de una función en un punto

Una función f(x)\; es continua en un punto a\;, si se cumple que:

\lim_{x \to a} f(x)=f(a)

Para que ésto se cumpla deben ocurrir las tres condiciones siguientes:

  • La función f(x)\; tiene límite en x=a\;: \lim_{x \to a} f(x)=L
  • La función está definida en x=a\;: Existe f(a)\;
  • Los dos valores anteriores coinciden: \lim_{x \to a} f(x)=f(a)

Tipos de discontinuidades

Discontinuidad evitable

Una función f(x)\; tiene una discontinuidad evitable en un punto x=a\; si existe \lim_{x \to a} f(x)=L \in \mathbb{R} pero éste no coincide con f(a)\;, bien porque f(x)\; no esté definida en x=a\; o bien porque simplemente sean distintos.

Evitable (no definida en un punto, tiene un hueco)

\lim_{x \to a} f(x)=L \in \mathbb{R}, pero \not\exist f(a)
Evitable (punto desplazado que deja un hueco)

\lim_{x \to a} f(x)=L \in \mathbb{R}, pero L \ne f(a)

ejercicio

Ejemplos: Discontinuidad evitable


Discontinuidad esencial de primera especie

Una función f(x)\; tiene una discontinuidad esencial de primera especie de salto finito en un punto x=a\; si existen los límites laterales en dicho punto y son finitos, pero estos no coinciden:

\lim_{x \to a^+} f(x) \ne \lim_{x \to a^-} f(x)

Se llama salto al valor absoluto de la diferencia enter ambos límites:

salto=|\lim_{x \to a^+} f(x) - \lim_{x \to a^-} f(x)|

Nota: f(a)\; puede estar definida o no, y puede coincidir o no con uno de los dos límites laterales.

Salto finito (Salto=d-c)

\lim_{x \to a^+} f(x)=d \, ;  \lim_{x \to a^-} f(x)=c \, ; \not\exist f(a)
Salto finito (Salto=d-c)

\lim_{x \to a^+} f(x)=d \, ;  \lim_{x \to a^-} f(x)=c \, ; f(a)=c

Salto finito (Salto=d-c)

\lim_{x \to a^+} f(x)=d \, ;  \lim_{x \to a^-} f(x)=c \, ; f(a)=d
Salto finito (Salto=d-c)

\lim_{x \to a^+} f(x)=d \, ;  \lim_{x \to a^-} f(x)=c \, ; f(a)=e

Una función f(x)\; tiene una discontinuidad esencial de primera especie de salto infinito si existen los límites laterales, siendo uno finito y otro infinito.

Nota: f(a)\; puede estar definida o no, y puede coincidir o no con el límite lateral finito.

Salto infinito

\lim_{x \to a^+} f(x)=+\infty \, ;  \lim_{x \to a^-} f(x)=c

En este caso "f(a)" no está definida pero podría estarlo y coincidir o no con "c"

Salto infinito

\lim_{x \to a^+} f(x)=-\infty \, ;  \lim_{x \to a^-} f(x)=c

En este caso "f(a)" no está definida pero podría estarlo y coincidir o no con "c"

Salto infinito

\lim_{x \to a^+} f(x)=c \, ;  \lim_{x \to a^-} f(x)=+\infty

En este caso "f(a)" no está definida pero podría estarlo y coincidir o no con "c"

Salto infinito

\lim_{x \to a^+} f(x)=c \, ;  \lim_{x \to a^-} f(x)=-\infty

En este caso "f(a)" no está definida pero podría estarlo y coincidir o no con "c"

Una función f(x)\; tiene una discontinuidad esencial de primera especie asintótica si si existen los límites laterales, siendo ambos + o - infinito, pero no necesariamente iguales.

Nota: f(a)\; puede estar definida o no.

Asintótica

\lim_{x \to a^+} f(x)=-\infty \, ;  \lim_{x \to a^-} f(x)=+\infty

En este caso "f(a)" no está definida pero podría estarlo

Asintótica

\lim_{x \to a^+} f(x)=+\infty \, ;  \lim_{x \to a^-} f(x)=+\infty

En este caso "f(a)" no está definida pero podría estarlo

Asintótica

\lim_{x \to a^+} f(x)=+\infty \, ;  \lim_{x \to a^-} f(x)=-\infty

En este caso "f(a)" no está definida pero podría estarlo

Asintótica

\lim_{x \to a^+} f(x)=-\infty \, ;  \lim_{x \to a^-} f(x)=-\infty

En este caso "f(a)" no está definida pero podría estarlo

ejercicio

Ejemplos: Discontinuidad de primera especie


Discontinuidad esencial de segunda especie

Una función f(x)\; tiene una discontinuidad de segunda especie si no existe alguno de los límites laterales.

Nota: f(a)\; puede estar definida o no.

Segunda especie

\not \exist \lim_{x \to a^+} f(x) \, ; \not \exist \lim_{x \to a^-} f(x)

Es oscilante por ambos lados

"f(a)" puede estar definida o no

Segunda especie

\not \exist \lim_{x \to a^+} f(x) \, ; \lim_{x \to a^-} f(x)=c

Es oscilante por la derecha

"f(a)" puede estar definida o no

Segunda especie

\not \exist \lim_{x \to a^-} f(x) \, ; \lim_{x \to a^+} f(x)=c

Es oscilante por la izquierda

"f(a)" puede estar definida o no

 

Algunos autores incluyen dentro de este tipo de discontinuidades los siguientes casos:

No hay función a la derecha de a

No hay función a la izquierda de a

No hay función ni a la derecha ni a la izquierda de a

No obstante, nosotros supondremos que en los casos en que no exista función por uno de los lados del punto, no tiene sentido hablar de límite lateral por ese lado del punto, y por tanto no diremos que haya discontinuidad por ese lado. (¡Ojo!, si podría haber discontinuidad por el otro lado del punto siempre que tenga sentido hablar de límite lateral por ese otro lado)

Como ejemplo de esto que estamos diciendo tienes el siguiente video:

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda