Plantilla:Ramas infinitas. Asíntotas (1ºBach)
De Wikipedia
Revisión de 17:56 18 dic 2016 Coordinador (Discusión | contribuciones) (→Asíntota horizontal) ← Ir a diferencia anterior |
Revisión de 17:58 18 dic 2016 Coordinador (Discusión | contribuciones) (→Asíntota oblicua) Ir a siguiente diferencia → |
||
Línea 104: | Línea 104: | ||
{{Ejemplo_simple|titulo=Ejemplo:|contenido=Veamos cómo la función <math>g(x)=\cfrac{x^2+1}{x-3}</math> presenta una A.O. en <math>y=x+3\;</math> | {{Ejemplo_simple|titulo=Ejemplo:|contenido=Veamos cómo la función <math>g(x)=\cfrac{x^2+1}{x-3}</math> presenta una A.O. en <math>y=x+3\;</math> | ||
- | En efecto, | + | En efecto, sea y=mx+n la A.O., entonces: |
- | :<math>\lim_{x \to +\infty} \cfrac{g(x)}{x}=\lim_{x \to +\infty} \cfrac{\cfrac{x^2+1}{x-3}}{x}=\lim_{x \to +\infty} \cfrac{x^2+1}{x(x-3)} =\lim_{x \to +\infty} \cfrac{x^2+1}{x^2-3x)}=\lim_{x \to +\infty} \cfrac{x^2}{x^2)}=1</math> (igual para <math>x \to -\infty</math>) | + | :<math>m=\lim_{x \to +\infty} \cfrac{g(x)}{x}=\lim_{x \to +\infty} \cfrac{\cfrac{x^2+1}{x-3}}{x}=\lim_{x \to +\infty} \cfrac{x^2+1}{x(x-3)} =\lim_{x \to +\infty} \cfrac{x^2+1}{x^2-3x)}=\lim_{x \to +\infty} \cfrac{x^2}{x^2)}=1</math> |
- | :<math>\lim_{x \to 1^+} [g(x)-x]= \lim_{x \to +\infty} [\cfrac{x^2+1}{x-3}-x]= \lim_{x \to +\infty} [\cfrac{x^2+1^-x^2+3x}{x-3}= \lim_{x \to +\infty} \cfrac{3x+1}{x-3}= \lim_{x \to +\infty} \cfrac{3x}{x}= 3</math> | + | :<math>n=\lim_{x \to 1^+} [g(x)-x]= \lim_{x \to +\infty} [\cfrac{x^2+1}{x-3}-x]= \lim_{x \to +\infty} [\cfrac{x^2+1^-x^2+3x}{x-3}= \lim_{x \to +\infty} \cfrac{3x+1}{x-3}= \lim_{x \to +\infty} \cfrac{3x}{x}= 3</math> |
+ | |||
+ | Para <math>x \to -\infty</math> se obtendrían los mismo valores. | ||
---- | ---- | ||
Haz uso de la siguiente escena de Geogebra para comprobar la solución: | Haz uso de la siguiente escena de Geogebra para comprobar la solución: |
Revisión de 17:58 18 dic 2016
Tabla de contenidos |
Ramas infinitas
Una función presenta una rama infinita si presenta una asíntota o una rama parabólica.
Pasamos a definir asíntota y rama parabólica.
Rama parabólica
Una función f(x) presenta una rama parabólica si ocurre alguno de los dos casos siguientes: | Ramas infinitas que no son asíntotas
|
Asíntotas
Las asíntotas son rectas hacia las que se acerca la gráfica de una función, tanto como se quiera, a medida que la variable independiernte se aproxima a un punto, a o a .
Hay tres tipos:
- Asíntota vertical (A.V.)
- Asíntota horizontal (A.H.)
- Asíntota oblicua (A.O.)
Asíntota vertical
Una función presenta en una asíntota vertical (A.V.) si ocurre alguna, o ambas, de estas dos cosas: Veamos cómo la función presenta una A.V. en En efecto, Haz uso de la siguiente escena de Geogebra para comprobar la solución: Representador de funciones Descripción: En esta escena podrás representar funciones definidas en hasta 4 trozos. | Asíntota vertical: x = 2
|
Asíntota horizontal
Una función presenta una asíntota horizontal (A.H.) en si ocurre alguna, o ambas, de estas dos cosas: Veamos cómo la función presenta una A.H. en En efecto, Haz uso de la siguiente escena de Geogebra para comprobar la solución: Representador de funciones Descripción: En esta escena podrás representar funciones definidas en hasta 4 trozos. | Asíntota horizontal: y = 1
|
Asíntota oblicua
Una función presenta una asíntota oblicua (A.O.) en si ocurre alguna, o ambas, de estas dos cosas: Para calcular los coeficientes y de la asíntota, se procederá de la siguiente manera:
Veamos cómo la función presenta una A.O. en En efecto, sea y=mx+n la A.O., entonces: Para se obtendrían los mismo valores. Haz uso de la siguiente escena de Geogebra para comprobar la solución: Representador de funciones Descripción: En esta escena podrás representar funciones definidas en hasta 4 trozos. | Asíntota oblicua: y = x + 3
|
Ejercicios propuestos
Ejercicios propuestos: Ramas infinitas |
Ramas infinitas de las funciones racionales
Ejercicios propuestos
Ejercicios propuestos: Ramas infinitas de las funciones racionales |
Ramas infinitas de las funciones trigonométricas, exponenciales y logarítmicas
Ejercicios propuestos
Ejercicios propuestos: Ramas infinitas de las funciones trigonométricas, exponenciales y logarítmicas |