Plantilla:Operaciones con monomios
De Wikipedia
(Diferencia entre revisiones)
Revisión de 10:18 7 feb 2017 Coordinador (Discusión | contribuciones) (→Suma y resta de monomios) ← Ir a diferencia anterior |
Revisión de 10:50 7 feb 2017 Coordinador (Discusión | contribuciones) (→Producto de monomios) Ir a siguiente diferencia → |
||
Línea 5: | Línea 5: | ||
===Producto de monomios=== | ===Producto de monomios=== | ||
- | Recordemos que para multiplicar potencias de la misma base se deja la misma base y se suman los exponentes. Así, para multiplicar monomios, se multiplican los coeficientes de cada monomio y las potencias con la misma base se agrupan y se multiplican. | + | {{producto de monomios}} |
- | {{p}} | + | |
- | {{Ejemplo | + | |
- | |titulo=Ejemplos: ''Producto de monomios'' | + | |
- | |enunciado= | + | |
- | Calcula: | + | |
- | + | ||
- | :a) <math>4ax^4y^3 \cdot x^2y \cdot 3ab^2y^3 \;\!</math> | + | |
- | + | ||
- | :b) <math>2ax^2 \cdot (-3a^3x) \cdot 5y^4x^3 \;\!</math> | + | |
- | |sol= | + | |
- | a) <math>4ax^4y^3 \cdot x^2y \cdot 3ab^2y^3 = 12a^2b^2x^6y^7 \;\!</math> | + | |
- | + | ||
- | b) <math>2ax^2 \cdot (-3a^3x) \cdot 5y^4x^3 = -30 a^4x^6y^4 \;\!</math> | + | |
- | }} | + | |
{{p}} | {{p}} | ||
Revisión de 10:50 7 feb 2017
Suma y resta de monomios
Procedimiento
Para sumar o restar dos monomios tienen que ser semejantes. La suma o resta es otro monomio semejante a ellos que tiene por coeficiente la suma o diferencia, según el caso, de los coeficientes.
Producto de monomios
Procedimiento
Para multiplicar monomios, se multiplican los coeficientes de cada monomio y las potencias con la misma base se agrupan y se multiplican.
Recordemos que: para multiplicar potencias de la misma base se deja la misma base y se suman los exponentes.
División de monomios
Entenderemos la división como una fracción que hay que simplificar, dividiendo los coeficientes y restando los exponentes de las potencias de la misma base.