Números complejos: Operaciones (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 11:10 6 may 2017
Coordinador (Discusión | contribuciones)
(Operaciones con números complejos en forma binómica)
← Ir a diferencia anterior
Revisión de 11:13 6 may 2017
Coordinador (Discusión | contribuciones)
(Operaciones con números complejos en forma binómica)
Ir a siguiente diferencia →
Línea 17: Línea 17:
* '''División:''' <math>\,\frac{(a + bi)}{(c + di)} = \frac{(a + bi) (c - di)}{(c + di) (c - di)} = \left({ac + bd \over c^2 + d^2}\right) + \left( {bc - ad \over c^2 + d^2} \right)i\, </math>, siempre que <math>c+di\,</math> no sea nulo. * '''División:''' <math>\,\frac{(a + bi)}{(c + di)} = \frac{(a + bi) (c - di)}{(c + di) (c - di)} = \left({ac + bd \over c^2 + d^2}\right) + \left( {bc - ad \over c^2 + d^2} \right)i\, </math>, siempre que <math>c+di\,</math> no sea nulo.
-}}+}}{{p}}
-{{p}}+
-{{Video_enlace_fonemato+
-|titulo1= Suma de números complejos+
-|duracion=8´53"+
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/12-numeros-complejos/04-suma-de-numeros-complejos#.VCrucRa7ZV8+
-|sinopsis=*Definición de suma de números complejos en forma binómica.+
-*Representación gráfica.+
-*Ejemplos.+
-*Propiedades.+
-}}+
-{{p}}+
-{{Video_enlace_fonemato+
-|titulo1= Producto de números complejos+
-|duracion=11´26"+
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/12-numeros-complejos/05-producto-de-numeros-complejos#.VCrvwha7ZV8+
-|sinopsis=*Definición de producto de números complejos en forma binómica.+
-*Ejemplos. +
-*Propiedades.+
-}}+
-{{p}}+
-{{Video_enlace_fonemato+
-|titulo1= Cociente de números complejos+
-|duracion=7´45"+
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/12-numeros-complejos/06-cociente-de-numeros-complejos#.VCrw-Ba7ZV8+
-|sinopsis=+
-*Definición de cociente de números complejos en forma binómica.+
-*Ejemplos. +
-}}+
-{{p}}+
-{{Video_enlace_fonemato+
-|titulo1= Potenciación de números complejos expresados en forma binómica+
-|duracion=3´50"+
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/12-numeros-complejos/10-potenciacion-de-numeros-complejos-expresados-en-forma-binomica#.VCr30xa7ZV8+
-|sinopsis=Las potencias de números complejos hacen uso de la fórmula del binomio de Newton. No obstante, son mucho más fáciles si se realizan en [[Números complejos: Operaciones en forma polar (1ºBach)#Potencias de números complejos en forma polar|forma polar]] como se verá en otro apartado de este tema. +
-}}+
-{{p}}+
{{ejemplo2 {{ejemplo2
|titulo=Ejemplos: ''Operaciones con complejos en forma binómica'' |titulo=Ejemplos: ''Operaciones con complejos en forma binómica''
Línea 96: Línea 60:
}} }}
}} }}
 +
{{p}} {{p}}
-{{Video_enlace_julioprofe+{{Video_enlace_fonemato
-|titulo1= Suma y resta de complejos en forma binómica+|titulo1= Suma de números complejos
-|duracion=3´50"+|duracion=8´53"
-|url1=https://www.youtube.com/watch?v=b0FFMwax2Oc+|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/12-numeros-complejos/04-suma-de-numeros-complejos#.VCrucRa7ZV8
-|sinopsis=Dados los complejos <math>z_1=5-3i\;</math> y <math>z_2=-4+2i\;</math>, halla <math>z_1+ z_2\;</math> y <math>z_1+ z_2\;</math>.+|sinopsis=*Definición de suma de números complejos en forma binómica.
 +*Representación gráfica.
 +*Ejemplos.
 +*Propiedades.
}} }}
{{p}} {{p}}
-{{Video_enlace_julioprofe+{{Video_enlace_fonemato
-|titulo1= Operaciones con complejos en forma binómica+|titulo1= Producto de números complejos
-|duracion=16´47"+|duracion=11´26"
-|url1=https://www.youtube.com/watch?v=ygJ6Tvda_Uc+|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/12-numeros-complejos/05-producto-de-numeros-complejos#.VCrvwha7ZV8
-|sinopsis=Dados los complejos <math>z_1=2+3i\;</math> y <math>z_2=4-5i\;</math>, halla:+|sinopsis=*Definición de producto de números complejos en forma binómica.
- +*Ejemplos.
-:a) <math>5z_1+ 7z_2\;</math>+*Propiedades.
- +
-:b) <math>z_1- \overline{z_2}\;</math>+
- +
-:c) <math>z_1 \cdot z_2\;</math>+
- +
-:d) <math>\overline{z_1} :z_2\;</math>+
- +
-:e) <math>|\overline{z_1+z_2}|\;</math>+
- +
- +
}} }}
{{p}} {{p}}
 +{{Video_enlace_fonemato
 +|titulo1= Cociente de números complejos
 +|duracion=7´45"
 +|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/12-numeros-complejos/06-cociente-de-numeros-complejos#.VCrw-Ba7ZV8
 +|sinopsis=
 +*Definición de cociente de números complejos en forma binómica.
 +*Ejemplos.
 +}}
 +{{p}}
 +{{Video_enlace_fonemato
 +|titulo1= Potenciación de números complejos expresados en forma binómica
 +|duracion=3´50"
 +|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/12-numeros-complejos/10-potenciacion-de-numeros-complejos-expresados-en-forma-binomica#.VCr30xa7ZV8
 +|sinopsis=Las potencias de números complejos hacen uso de la fórmula del binomio de Newton. No obstante, son mucho más fáciles si se realizan en [[Números complejos: Operaciones en forma polar (1ºBach)#Potencias de números complejos en forma polar|forma polar]] como se verá en otro apartado de este tema.
 +}}
 +----
{{Video_enlace_fonemato {{Video_enlace_fonemato
|titulo1= 2 ejercicios (Suma) |titulo1= 2 ejercicios (Suma)
Línea 170: Línea 144:
|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/12-numeros-complejos/1001-dos-ejercicios-9#.VCr5_ha7ZV8 |url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/12-numeros-complejos/1001-dos-ejercicios-9#.VCr5_ha7ZV8
|sinopsis=Videotutorial. |sinopsis=Videotutorial.
 +}}
 +----
 +{{Video_enlace_julioprofe
 +|titulo1= Suma y resta de complejos en forma binómica
 +|duracion=3´50"
 +|url1=https://www.youtube.com/watch?v=b0FFMwax2Oc
 +|sinopsis=Dados los complejos <math>z_1=5-3i\;</math> y <math>z_2=-4+2i\;</math>, halla <math>z_1+ z_2\;</math> y <math>z_1+ z_2\;</math>.
 +}}
 +{{p}}
 +{{Video_enlace_julioprofe
 +|titulo1= Operaciones con complejos en forma binómica
 +|duracion=16´47"
 +|url1=https://www.youtube.com/watch?v=ygJ6Tvda_Uc
 +|sinopsis=Dados los complejos <math>z_1=2+3i\;</math> y <math>z_2=4-5i\;</math>, halla:
 +
 +:a) <math>5z_1+ 7z_2\;</math>
 +
 +:b) <math>z_1- \overline{z_2}\;</math>
 +
 +:c) <math>z_1 \cdot z_2\;</math>
 +
 +:d) <math>\overline{z_1} :z_2\;</math>
 +
 +:e) <math>|\overline{z_1+z_2}|\;</math>
 +
 +
}} }}
{{p}} {{p}}

Revisión de 11:13 6 may 2017

Tabla de contenidos

(Pág. 150)

Operaciones con números complejos en forma binómica

  • Suma: \,(a + bi) + (c + di) = (a + c) + (b + d)i
  • Resta: \,(a + bi) - (c + di) = (a - c) + (b - d)i
  • Multiplicación: \,(a + bi) (c + di) = ac + bci + adi + bd i^2 = (ac - bd) + (bc + ad)i
  • División: \,\frac{(a + bi)}{(c + di)} = \frac{(a + bi) (c - di)}{(c + di) (c - di)} = \left({ac + bd \over c^2 + d^2}\right) + \left( {bc - ad \over c^2 + d^2} \right)i\,, siempre que c+di\, no sea nulo.

ejercicio

Ejemplos: Operaciones con complejos en forma binómica


Efectúa las siguientes operaciones:

1. \,(3 + 2i) + (5 + 6i)
2. \,(6 - 5i) - (4 - 7i)
3. \,(3 + 4i) (2 - 5i)
4. \,\frac{(5 - 3i)}{(4 + 2i)}




Representación gráfica de las operaciones con complejos en forma binómica

(Pág. 151)

Propiedades de las operaciones con números complejos

ejercicio

Propiedades


  • Propiedades de la suma:
    • Asociativa: z_1+(z_2+z_3)=(z_1+z_2)+z_1\;
    • Conmutativa: z_1+z_2=z_2+z_1\;
    • Existencia de elemento neutro: El 0 es el elemento neutro de la suma.
    • Existencia de opuesto: Todo número complejo, a+bi\,, tiene un opuesto, -a-bi\,
  • Propiedades del producto:
    • Asociativa: z_1 \cdot (z_2 \cdot z_3)=(z_1 \cdot z_2) \cdot z_1
    • Conmutativa: z_1 \cdot z_2=z_2 \cdot z_1
    • Existencia de elemento neutro: El 1 es el elemento neutro del producto.
    • Existencia de inverso: Todo número complejo, a+bi\,, distinto de 0, tiene inverso, \cfrac{1}{a+bi}:
\cfrac{1}{a+bi}=\cfrac{a-bi}{(a+bi)(a-bi)}=\cfrac{a-bi}{a^2+b^2}=\cfrac{a}{a^2+b^2}-\cfrac{b}{a^2+b^2}i
  • Propiedad distributiva del producto respecto de la suma: z_1\cdot(z_2+z_3)=z_1 \cdot z_2 + z_1 \cdot z_3

ejercicio

Ejercicios resueltos


a) Obtener un polinomio de segundo grado cuyas raíces sean 5-2i\; y 5+2i\;.

b) ¿Cuánto ha de valer x para que (2x+i)^2\; sea imaginario puro?

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Operaciones con números complejos


(Pág. 150-151)

2b,d,h,k; 3; 4

1; 2a,c,e,f,g,i,j; 5

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda