La parábola (1ºBach)
De Wikipedia
Revisión de 08:18 24 abr 2017 Coordinador (Discusión | contribuciones) ← Ir a diferencia anterior |
Revisión de 07:59 8 may 2017 Coordinador (Discusión | contribuciones) Ir a siguiente diferencia → |
||
Línea 152: | Línea 152: | ||
Despejando <math>\beta \,</math> de la tercera ecuación: <math>\beta=c-\cfrac{\alpha^2}{2p}=c-\cfrac{\cfrac{b^2}{4a^2}}{\cfrac{1}{a}}=c-\cfrac{b^2}{4a}=\cfrac{4ac-b^2}{4a}</math> | Despejando <math>\beta \,</math> de la tercera ecuación: <math>\beta=c-\cfrac{\alpha^2}{2p}=c-\cfrac{\cfrac{b^2}{4a^2}}{\cfrac{1}{a}}=c-\cfrac{b^2}{4a}=\cfrac{4ac-b^2}{4a}</math> | ||
+ | }} | ||
+ | {{p}} | ||
+ | {{Video_enlace_julioprofe | ||
+ | |titulo1=Ejemplo 1 | ||
+ | |duracion=8'21" | ||
+ | |sinopsis=Construir la parábola con vértice (3,2) y foco (3,4). Halla su ecuación estandard y su ecuación general. | ||
+ | |url1=https://www.youtube.com/watch?v=N8WhvRJbGC8 | ||
+ | }} | ||
+ | {{p}} | ||
+ | {{Video_enlace_julioprofe | ||
+ | |titulo1=Ejemplo 2 | ||
+ | |duracion=9'44" | ||
+ | |sinopsis=Halla el vértice y el foco de la parábola de ecuación general <math>2x^2+8x-y+8=0</math>. | ||
+ | |url1=https://www.youtube.com/watch?v=2pvke2ELR3M | ||
}} | }} | ||
{{p}} | {{p}} | ||
{{Video_enlace_unicoos | {{Video_enlace_unicoos | ||
- | |titulo1=Ecuación de la parábola | + | |titulo1=Ejemplos 3 |
|duracion=10'29" | |duracion=10'29" | ||
|sinopsis=Ejemplos de parábolas con ejes verticales y horizontales. | |sinopsis=Ejemplos de parábolas con ejes verticales y horizontales. |
Revisión de 07:59 8 may 2017
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
La parábola
Escena que muestra la propiedad de la parábola de que cualquier "rayo" perpendicular a la directriz rebota en la tangente a la curva y se refleja en dirección al foco.
Aplicaciones prácticas:
- Las antenas satelitales y radiotelescopios aprovechan el principio concentrando señales recibidas desde un emisor lejano en un receptor colocado en la posición del foco.
- La concentración de la radiación solar en un punto, mediante un reflector parabólico tiene su aplicación en pequeñas cocinas solares y grandes centrales captadoras de energía solar.
- Analogamente, una fuente emisora situada en el foco, enviará un haz de rayos paralelos al eje: diversas lámparas y faros tienen espejos con superficies parabólicas reflectantes para poder enviar haces de luz paralelos emanados de una fuente en posición focal. Los rayos convergen o divergen si el emisor se deplaza de la posición focal.
|
|
|
|
En la siguiente escena vamos a estudiar la trayectoria de un proyectil.
Excentricidad de la parábola
La excentricidad de la parábola es el cociente entre y . En consecuencia, la excentricidad de la parábola es siempre igual a 1.
Ecuaciones de la parábola
Ecuación reducida de la parábola
Ecuación reducida de la parábola
- La ecuación de una parábola con foco en el eje de abscisas, directriz paralela al eje de ordenadas y vértice en el origen de coordenadas, es:
|
Recordemos que . Por tanto, las coordenadas del foco y la ecuación de la directiz son:
Como cualquier punto de la parábola cumple que:
Sustituyendo las distancias por su fórmula matemática, tenemos:
Elevando ambos miembros al cuadrado:
Y simplificando:
En la siguiente escena vamos a calcular la ecuación reducida de la parábola con distancia del foco a la directriz p=2.
Ecuación de la parábola con el vértice desplazado del origen de coordenadas
Ecuación de la parábola con el vértice desplazado del origen de coordenadas
- La ecuación de una parábola con directriz paralela al eje de ordenadas y vértice en el el punto , es:
|
Ecuación de la parábola con eje de simetría vertical
Ecuación de la parábola con eje de simetría vertical
- La ecuación de una parábola con directriz paralela al eje de abscisas y vértice en el el punto , es:
|
Esta ecuación también se puede expresar de la siguiente manera:
Ecuación de la parábola con eje de simetría vertical
- La ecuación de una parábola con directriz paralela al eje de abscisas y vértice en el el punto , es:
|
donde
Basta con desarrollar la ecuación
Despejando :
donde basta con llamar:
Proposición
- Las coordenadas vértice , de una parábola con directriz paralela al eje de abscisas , son:
Partiendo del resultado anterior en el que teníamos que:
Despejando de la primera ecuación:
Despejando de la segunda ecuación:
Despejando de la tercera ecuación:Construir la parábola con vértice (3,2) y foco (3,4). Halla su ecuación estandard y su ecuación general.
Halla el vértice y el foco de la parábola de ecuación general 2x2 + 8x − y + 8 = 0.
Ejemplos de parábolas con ejes verticales y horizontales.
Construcciones de la parábola
Método de construcción de la parábola basado en su definición como lugar geométrico.
Construcción de la parábola como envolvente.
Generación de la parábola a partir del centro de una circunferencia.