Plantilla:Derivada (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 09:31 8 may 2017
Coordinador (Discusión | contribuciones)
(Obtención de la derivada de una función en un punto)
← Ir a diferencia anterior
Revisión de 06:03 17 may 2017
Coordinador (Discusión | contribuciones)
(Obtención de la derivada de una función en un punto)
Ir a siguiente diferencia →
Línea 28: Línea 28:
|descripcion=En esta escena podrás ver cómo se interpreta geométricamente el concepto de derivada de una función en un punto. |descripcion=En esta escena podrás ver cómo se interpreta geométricamente el concepto de derivada de una función en un punto.
|enlace=[https://ggbm.at/hgCkgeU8 Derivada de una función en un punto] |enlace=[https://ggbm.at/hgCkgeU8 Derivada de una función en un punto]
-}} 
-{{p}} 
-{{Video_enlace_unicoos 
-|titulo1=Ejemplo: Derivada de una función en un punto 
-|duracion=9'24" 
-|sinopsis=En la segunda parte de este video podrás ver un ejemplo de derivada de una función en un punto usando la definición de derivada. 
-|url1=http://www.unicoos.com/video/matematicas/1-bachiller/derivadas/definicion-de-derivada/derivada-utilizando-la-definicion-01 
}} }}
{{p}} {{p}}

Revisión de 06:03 17 may 2017

Tabla de contenidos

Crecimiento de una función en un punto. Derivada

  • El crecimiento de una función f\; en un intervalo [a,b]\; se mide mediante la pendiente de la recta que pasa por los puntos A(a,f(a))\; y B(b,f(b))\;, es decir, mediante T.V.M._f[a,b]\;.
  • El crecimiento de una función f\; en un punto de abscisa a\; se mide mediante la pendiente de la recta tangente a la curva en dicho punto. A dicho valor se le llama derivada de f\; en el punto a\; y se expresa f'(a)\;.

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Crecimiento en un punto. Derivada


(pág. 303)

1

Obtención de la derivada de una función en un punto

Hemos dicho que la derivada de una función f\; en un punto a\; es la pendiente de la recta tangente a la curva en dicho punto, y se representa f'(a)\;. Podemos obtener dicho valor mediante el concepto de límite:

ejercicio

Derivada de una función en un punto


La derivada de una función f\; en un punto a\; es igual a:

f'(a) = \lim_{x \to a} \cfrac{f(x)-f(a)}{x-a} = \lim_{h \to 0} \cfrac{f(a+h)-f(a)}{h}

ejercicio

Ejemplos: Derivada de una función en un punto


Calcula la derivada de la función f(x)=x^2-4x\; en el punto de abscisa x=-1\;

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Derivada de una función en un punto


(pág. 305)

2

1, 3, 4

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda