Correspondencia
De Wikipedia
(Diferencia entre revisiones)
Revisión de 09:19 23 may 2017 Coordinador (Discusión | contribuciones) (→Tipos de correspondencias) ← Ir a diferencia anterior |
Revisión de 09:20 23 may 2017 Coordinador (Discusión | contribuciones) (→Tipos de correspondencias) Ir a siguiente diferencia → |
||
Línea 54: | Línea 54: | ||
* Una '''aplicación''' o '''función''' es una correspondencia unívoca cuyo conjunto origen coincide con el conjunto inicial. | * Una '''aplicación''' o '''función''' es una correspondencia unívoca cuyo conjunto origen coincide con el conjunto inicial. | ||
+ | }} | ||
+ | {{Tabla3|celda1= | ||
+ | [[Imagen:correspondencia_univoca.png|thumb|center|Correspondencia unívoca pero no biunívoca]] | ||
+ | |celda2=[[Imagen:correspondencia_biunivoca.png|thumb|center|Correspondencia biunívoca]] | ||
+ | |celda3= [[Imagen:correspondencia_aplicacion.png|thumb|center|Aplicación o función]] | ||
}} | }} | ||
{{p}} | {{p}} | ||
Línea 61: | Línea 66: | ||
|sinopsis=Concepto de función. Ejemplos. | |sinopsis=Concepto de función. Ejemplos. | ||
|url1=https://www.youtube.com/watch?v=nAdy1A0JHeQ | |url1=https://www.youtube.com/watch?v=nAdy1A0JHeQ | ||
- | }} | ||
- | {{Tabla3|celda1= | ||
- | [[Imagen:correspondencia_univoca.png|thumb|center|Correspondencia unívoca pero no biunívoca]] | ||
- | |celda2=[[Imagen:correspondencia_biunivoca.png|thumb|center|Correspondencia biunívoca]] | ||
- | |celda3= [[Imagen:correspondencia_aplicacion.png|thumb|center|Aplicación o función]] | ||
}} | }} | ||
{{p}} | {{p}} |
Revisión de 09:20 23 may 2017
Correspondencia entre conjuntos
Una correspondencia ente dos conjuntos A y B es una ley o criterio que asocia elementos de A con elementos de B.
![]()
|
Tipos de correspondencias
- Una correspondencia es unívoca si cada elemento inicial que tenga imagen solo tienen una imagen.
- Una correspondencia es biunívoca si cada elemento inicial que tenga imagen solo tienen una imagen, y cada elemento imagen solo tiene ese origen.
- Una aplicación o función es una correspondencia unívoca cuyo conjunto origen coincide con el conjunto inicial.
Tipos de aplicaciones
- Una aplicación es inyectiva si cada imagen se corresponde con un único origen.
- Una aplicación es sobreyectiva si el conjunto imagen coincide con el conjunto final.
- Una aplicación es biyectiva si es inyectiva y sobreyectiva simultaneamente.