Plantilla:Limite en el infinito

De Wikipedia

(Diferencia entre revisiones)

Revisión de 16:55 21 jun 2017

  • Decimos que "x\; tiende a + infinito" (x \rightarrow + \infty) cuando x\; toma valores positivos tan grandes como queramos.
  • Decimos que "x\; tiende a - infinito" (x \rightarrow - \infty) cuando x\; toma valores negativos tan pequeños como queramos.

Nota: A veces te podrás encontrar también la expresión "x\; tiende a infinito" (x \rightarrow \infty) cuando x\; tiende, indistintamente, a + infinito o a - infinito. Nosotros intentaremos evitarlo para no crear confusión aunque eso nos suponga tener que escribir más.

Los posibles comportamientos de una función cuando x tiende a + \infty (o a - \infty) son los siguientes:

  • \lim_{x \to +\infty} f(x)=+\infty si cuando x \to + \infty, los valores de f(x)\; se hacen tan grandes que no se pueden acotar.
  • \lim_{x \to +\infty} f(x)=-\infty si cuando x \to + \infty, los valores de f(x)\; se hacen tan pequeños y negativos que no se pueden acotar.
  • \lim_{x \to +\infty} f(x)=L \in \mathbb{R} si cuando x \to + \infty, los valores de f(x)\; se hacen tan proximos a L\; como se quiera.
En este caso se dice que la recta y=L\; es una asíntota horizontal (A.H.) de la función.


En estas tres definiciones se puede cambiar x \to +\infty por x \to -\infty para obtener otras tres definiciones análogas.

ejercicio

Ejemplo: Comportamiento de una función cuando x tiende a (+/-) infinito


Apoyándote en los conocimientos que tengas de la gráfica de las siguientes funciones, obten y comprueba el valor de sus límites en + \infty y - \infty, cuando éstos existan o tenga sentido calcularlos.

a) f(x)= \cfrac{1}{x}        b) f(x)= x^3\;        c) f(x)= 2^x\;        d) f(x)= log \, x        e) f(x)= sen \, x
Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda