Plantilla:Límite de una función (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 17:20 21 jun 2017
Coordinador (Discusión | contribuciones)
(Límite de de una función en un punto)
← Ir a diferencia anterior
Revisión de 17:22 21 jun 2017
Coordinador (Discusión | contribuciones)
(Límite de de una función en un punto)
Ir a siguiente diferencia →
Línea 1: Línea 1:
==Límite de de una función en un punto== ==Límite de de una función en un punto==
-El concepto de límite es la base para poder abordar el concepto de continuidad y , más adelante, el de derivabilidad de una función. Es pués, de vital interés, tener bien claro este concepto.+{{Límite de de una función en un punto}}
-{{p}}+
-{{Caja_Amarilla|texto=+
-*Decimos que '''"<math>x\;</math> tiende a <math>a\;</math> por la izquierda"''' (<math>x \rightarrow a^-</math>) cuando <math>x\;</math> toma valores menores que <math>a\;</math>, cada vez más próximos a <math>a\;</math>.+
-*Decimos que '''"<math>x\;</math> tiende a <math>a\;</math> por la derecha"''' (<math>x \rightarrow a^+</math>) cuando <math>x\;</math> toma valores mayores que <math>a\;</math>, cada vez más próximos a <math>a\;</math>.+
-*Decimos que '''"<math>x\;</math> tiende a <math>a\;</math>"''' (<math>x \rightarrow a</math>) cuando <math>x\;</math> toma valores cada vez más próximos a <math>a\;</math>.+
-}}+
-{{p}}+
-{{Video_enlace_fonemato+
-|titulo1=La vida en la recta real+
-|duracion=11'13"+
-|sinopsis=La clave para entender el Cálculo Diferencial de una variable y divertirse con él es aprender a "meterse en la piel" de un habitante genérico "x" de la recta real.+
-En este vídeo describimos la vida de "x" ("x" eres tú) en el alambre infinito donde vive: un universo de una única dimensión.+
- +
-*Los puntos en la recta real.+
-*Aproximación a un punto por la derecha y por la izquierda.+
-*Aproximación a <math>+\infty</math> y <math>-\infty</math>.+
- +
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/15-funciones-reales-de-variable-real/11-la-vida-en-la-recta-real-5+
-}}+
-{{Video_enlace_fonemato+
-|titulo1=Recordando cosas importantes+
-|duracion=11'47"+
-|sinopsis={{p}}+
-*Concepto de distancia entre dos puntos.+
-*Concepto de entorno de un punto.+
-*Aproximación a un punto por la derecha y por la izquierda.+
-*Aproximación a <math>+\infty</math> y <math>-\infty</math>.+
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/16-limites-de-funciones/01-recordando-cosas-importantes-3+
-}}+
-{{p}}+
-Dada una función <math>f(x)\;</math>, cuando la variable independiente <math>x\;</math> se aproxima a un cierto punto <math>a\;</math>, ya sea por la derecha o por la izquierda, <math>f(x)\;</math> va tomando valores que pueden aproximarse o no a un cierto punto. Diremos que:+
-{{p}}+
-{{Caja_Amarilla|texto=+
-*Una función <math>f(x)\;</math> tiene '''límite por la izquierda''' en un punto <math>a\;</math>, si existe un número <math>L_1 \in \mathbb{R}</math>, de manera que cuando <math>x \rightarrow a^-\;</math>, los correspondientes valores <math>f(x) \rightarrow L_1</math>. Lo representaremos:+
- +
-<center><math>\lim_{x \to a^-} f(x)=L_1</math></center>+
-{{p}}+
-*Una función <math>f(x)\;</math> tiene '''límite por la derecha''' en un punto <math>a\;</math>, si existe un número <math>L_2 \in \mathbb{R}</math>, de manera que cuando <math>x \rightarrow a^+\;</math>, los correspondientes valores <math>f(x) \rightarrow L_2</math>. Lo representaremos:+
- +
-<center><math>\lim_{x \to a^+} f(x)=L_2</math></center>+
-{{p}}+
-*Una función <math>f(x)\;</math> tiene '''límite''' en un punto <math>a\;</math>, si existe un número <math>L \in \mathbb{R}</math> de manera que+
-{{p}}+
-<center><math>\lim_{x \to a^-} f(x)=\lim_{x \to a^+} f(x)=L</math></center>+
- +
-{{b4}}{{b}}y lo representaremos:+
- +
-<center><math>\lim_{x \to a} f(x)=L</math></center>+
- +
-{{b4}}{{b}}Nótese que aunque existan los límites laterales, si estos no coinciden, el límite no existe.+
-{{p}}+
-}}+
-{{p}} +
-{{Video_enlace_fonemato+
-|titulo1=La Madre del Cordero del Cálculo+
-|duracion=8'53"+
-|sinopsis=En este vídeo, el más importante de todos, hablamos del mágico instante en que tú, el número real "x", por amor, consagras gozosamente tu existencia a la observación y análisis de la Dulcinea "f(x)" que da sentido a tu vida y la llena de alegría y diversión.+
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/16-limites-de-funciones/02-la-madre-del-cordero-del-calculo-diferencial-4+
-}}+
-{{Video_enlace_fonemato+
-|titulo1=Límite de una función en un punto+
-|duracion=28'30"+
-|sinopsis=En este vídeo hablamos de los dos límites laterales de una función "f" en un punto "a" (límite de "f" en "a" por la izquierda y límite de "f" en "a" por la derecha), interpretándolos en términos geométricos. Si dichos dos límites laterales de "f" en "a" son iguales a "L", se dice que "L" es el límite de "f" en "a".+
- +
-*Conceptos de límite de una función por la derecha y por la izquierda de un punto.+
-*Concepto de límite de una función en un punto.+
-*Se puede calcular el límite en un punto independientemente de que el punto pertenezca o no al dominio de la función. Ejemplos.+
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/16-limites-de-funciones/03-limite-de-una-funcion-en-un-punto-4+
-}}+
-{{Video_enlace_fonemato+
-|titulo1=El límite de una función en un punto según Cauchy (nivel superior)+
-|duracion=18'31"+
-|sinopsis=Definición rigurosa de límite de una función en un punto.+
- +
-'''AVISO:''' Este video excede el nivel de 1º de Bachillerato.+
- +
-|url1=https://matematicasbachiller.com/videos/universidad/calculo-diferencial-de-una-variable/02-limites-de-funciones/06-el-limite-de-una-funcion-en-un-punto-segun-cauchy}}+
-{{Video_enlace_fonemato+
-|titulo1=Funciones sin límite en un punto (nivel superior)+
-|duracion=17'06"+
-|sinopsis=Sólo tiene sentido calcular los límites laterales de una función en un punto cuando la función está definida en las "proximidades" del punto.+
- +
-'''AVISO:''' Este video excede, en parte, el nivel de 1º de Bachillerato.+
-|url1=http://matematicasbachiller.com/videos/universidad/calculo-diferencial-de-una-variable/02-limites-de-funciones/09-funciones-sin-limite-en-un-punto+
-}}+
{{p}} {{p}}

Revisión de 17:22 21 jun 2017

Tabla de contenidos

Límite de de una función en un punto

El concepto de límite es la base para poder abordar el concepto de continuidad y , más adelante, el de derivabilidad de una función. Es pués, de vital interés, tener bien claro este concepto.

  • Decimos que "x\; tiende a a\; por la izquierda" (x \rightarrow a^-) cuando x\; toma valores menores que a\;, cada vez más próximos a a\;, tan próximos a a\; como se quiera.
  • Decimos que "x\; tiende a a\; por la derecha" (x \rightarrow a^+) cuando x\; toma valores mayores que a\;, cada vez más próximos a a\;, tan próximos a a\; como se quiera.
  • Decimos que "x\; tiende a a\;" (x \rightarrow a) cuando x\; toma valores cada vez más próximos a a\;, tan próximos a a\; como se quiera, tanto a su izquierda como a su derecha.

Dada una función f(x)\;, cuando la variable independiente x\; se aproxima a un cierto punto a\;, ya sea por la derecha o por la izquierda, f(x)\; va tomando valores que pueden aproximarse o no a un cierto punto. Diremos que:

  • Una función f(x)\; tiene límite por la izquierda en un punto a\;, si existe un número L_1 \in \mathbb{R}, de manera que cuando x \rightarrow a^-\;, los correspondientes valores f(x) \rightarrow L_1. Lo representaremos:
\lim_{x \to a^-} f(x)=L_1

  • Una función f(x)\; tiene límite por la derecha en un punto a\;, si existe un número L_2 \in \mathbb{R}, de manera que cuando x \rightarrow a^+\;, los correspondientes valores f(x) \rightarrow L_2. Lo representaremos:
\lim_{x \to a^+} f(x)=L_2

  • Una función f(x)\; tiene límite en un punto a\;, si existe un número L \in \mathbb{R} de manera que

\lim_{x \to a^-} f(x)=\lim_{x \to a^+} f(x)=L

     y lo representaremos:

\lim_{x \to a} f(x)=L

     Nótese que aunque existan los límites laterales, si estos no coinciden, el límite no existe.

Límites infinitos. Asíntotas verticales

El concepto de límite visto en el apartado anterior puede extenderese al caso en que, al aproximarnos al punto a\;, la función se aproxime a +\infty ó -\infty.

  • Una función f(x)\; tiende a +\infty por la izquierda de un punto a\;, si f(x)\; se aproxima a valores positivos cada vez más grandes y no acotables, cuando x \rightarrow a^-\;. Lo representaremos:
\lim_{x \to a^-} f(x)=+\infty

  • Una función f(x)\; tiende a +\infty por la derecha de un punto c\;, si f(x)\; se aproxima a valores positivos cada vez más grandes y no acotables, cuando x \rightarrow c^+\;. Lo representaremos:
\lim_{x \to c^+} f(x)=+\infty

  • Una función f(x)\; tiende a +\infty en un punto c\;, si
\lim_{x \to a^-} f(x)=\lim_{x \to a^+} f(x)=+\infty

     y lo representaremos:

\lim_{x \to a} f(x)=+\infty

  • De forma análoga se puede definir la tendencia a -\infty si cambiamos la frase "se aproxima a valores positivos cada vez más grandes y no acotables" por "se aproxima a valores negativos cada vez más pequeños y no acotables", en los tres casos.
  • En todos estos casos diremos que la función tiene una asíntota vertical en el punto x=a\;.

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Límite de una función en un punto


(Pág. 276)

1

Continuidad de una función en un punto

Una función f(x)\; es continua en un punto a\;, si se cumple que:

\lim_{x \to a} f(x)=f(a)

Para que ésto se cumpla deben ocurrir las tres condiciones siguientes:

  • La función f(x)\; tiene límite en x=a\;: \lim_{x \to a} f(x)=L
  • La función está definida en x=a\;: Existe f(a)\;
  • Los dos valores anteriores coinciden: \lim_{x \to a} f(x)=f(a)

Tipos de discontinuidades

Discontinuidad evitable

Una función f(x)\; tiene una discontinuidad evitable en un punto x=a\; si existe \lim_{x \to a} f(x)=L \in \mathbb{R} pero éste no coincide con f(a)\;, bien porque f(x)\; no esté definida en x=a\; o bien porque simplemente sean distintos.

Evitable (no definida en un punto, tiene un hueco)

\lim_{x \to a} f(x)=L \in \mathbb{R}, pero \not\exist f(a)
Evitable (punto desplazado que deja un hueco)

\lim_{x \to a} f(x)=L \in \mathbb{R}, pero L \ne f(a)

ejercicio

Ejemplo: Discontinuidad evitable


Comprueba en qué puntos presentan las siguientes funciones una discontinuidad evitable:

a) y=\cfrac{x^2-2x}{(x-2)}         b) y = \begin{cases} x & \mbox{si }x \ne 1 \\  3 & \mbox{si }x=1 \end{cases}

Discontinuidad esencial de primera especie

Una función f(x)\; tiene una discontinuidad esencial de primera especie de salto finito en un punto x=a\; si existen los límites laterales en dicho punto y son finitos, pero estos no coinciden:

\lim_{x \to a^+} f(x) \ne \lim_{x \to a^-} f(x)

Se llama salto al valor absoluto de la diferencia enter ambos límites:

salto=|\lim_{x \to a^+} f(x) - \lim_{x \to a^-} f(x)|

Nota: f(a)\; puede estar definida o no, y puede coincidir o no con uno de los dos límites laterales.

Salto finito (Salto=d-c)

\lim_{x \to a^+} f(x)=d \, ;  \lim_{x \to a^-} f(x)=c \, ; \not\exist f(a)
Salto finito (Salto=d-c)

\lim_{x \to a^+} f(x)=d \, ;  \lim_{x \to a^-} f(x)=c \, ; f(a)=c

Salto finito (Salto=d-c)

\lim_{x \to a^+} f(x)=d \, ;  \lim_{x \to a^-} f(x)=c \, ; f(a)=d
Salto finito (Salto=d-c)

\lim_{x \to a^+} f(x)=d \, ;  \lim_{x \to a^-} f(x)=c \, ; f(a)=e

ejercicio

Ejemplo: Discontinuidad de salto finito


Comprueba en qué punto presenta la siguiente función una discontinuidad de salto finito y averigua el valor del salto:

y = \begin{cases} x & \mbox{si }x \le 2 \\  1 & \mbox{si }x>2 \end{cases}

Una función f(x)\; tiene una discontinuidad esencial de primera especie de salto infinito si existen los límites laterales, siendo uno finito y otro infinito.

Nota: f(a)\; puede estar definida o no, y puede coincidir o no con el límite lateral finito.

Salto infinito

\lim_{x \to a^+} f(x)=+\infty \, ;  \lim_{x \to a^-} f(x)=c

En este caso "f(a)" no está definida pero podría estarlo y coincidir o no con "c"

Salto infinito

\lim_{x \to a^+} f(x)=-\infty \, ;  \lim_{x \to a^-} f(x)=c

En este caso "f(a)" no está definida pero podría estarlo y coincidir o no con "c"

Salto infinito

\lim_{x \to a^+} f(x)=c \, ;  \lim_{x \to a^-} f(x)=+\infty

En este caso "f(a)" no está definida pero podría estarlo y coincidir o no con "c"

Salto infinito

\lim_{x \to a^+} f(x)=c \, ;  \lim_{x \to a^-} f(x)=-\infty

En este caso "f(a)" no está definida pero podría estarlo y coincidir o no con "c"

ejercicio

Ejemplo: Discontinuidad de salto infinito


Comprueba en qué punto presenta la siguiente función una discontinuidad de salto ifinito:

y = \begin{cases} x & \mbox{si }x \le 0 \\  \cfrac{1}{x} & \mbox{si }x>0 \end{cases}

Una función f(x)\; tiene una discontinuidad esencial de primera especie asintótica si si existen los límites laterales, siendo ambos + o - infinito, pero no necesariamente iguales.

Nota: f(a)\; puede estar definida o no.

Asintótica

\lim_{x \to a^+} f(x)=-\infty \, ;  \lim_{x \to a^-} f(x)=+\infty

En este caso "f(a)" no está definida pero podría estarlo

Asintótica

\lim_{x \to a^+} f(x)=+\infty \, ;  \lim_{x \to a^-} f(x)=+\infty

En este caso "f(a)" no está definida pero podría estarlo

Asintótica

\lim_{x \to a^+} f(x)=+\infty \, ;  \lim_{x \to a^-} f(x)=-\infty

En este caso "f(a)" no está definida pero podría estarlo

Asintótica

\lim_{x \to a^+} f(x)=-\infty \, ;  \lim_{x \to a^-} f(x)=-\infty

En este caso "f(a)" no está definida pero podría estarlo

ejercicio

Ejemplo: Discontinuidad asintótica


Comprueba en qué puntos presentan las siguientes funciones una discontinuidad asintótica:

a) y = \cfrac{2}{x+2}          b) y = \cfrac{1}{x^2}

Discontinuidad esencial de segunda especie

Una función f(x)\; tiene una discontinuidad de segunda especie si no existe alguno de los límites laterales.

Nota: f(a)\; puede estar definida o no.

Segunda especie

\not \exist \lim_{x \to a^+} f(x) \, ; \not \exist \lim_{x \to a^-} f(x)

Es oscilante por ambos lados

"f(a)" puede estar definida o no

Segunda especie

\not \exist \lim_{x \to a^+} f(x) \, ; \lim_{x \to a^-} f(x)=c

Es oscilante por la derecha

"f(a)" puede estar definida o no

Segunda especie

\not \exist \lim_{x \to a^-} f(x) \, ; \lim_{x \to a^+} f(x)=c

Es oscilante por la izquierda

"f(a)" puede estar definida o no

ejercicio

Ejemplo: Discontinuidad de segunda especie


Comprueba en qué punto presenta la siguiente función una discontinuidad de segunda especie:

y = sen \, \frac{1}{x}

 

Algunos autores incluyen dentro de este tipo de discontinuidades los siguientes casos:

No hay función a la derecha de a

No hay función a la izquierda de a

No hay función ni a la derecha ni a la izquierda de a

No obstante, en estos casos, nosotros no diremos que la función sea discontinua en "a". Para explicar esto con rigor es necesario recurrir a la definición formal de continuidad que se verá en cursos posteriores.

Como ejemplo de esto que estamos diciendo tienes el siguiente video:

Actividades

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda