Límite de una función (2ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 17:41 22 jun 2017
Coordinador (Discusión | contribuciones)
(Definición formal de límite)
← Ir a diferencia anterior
Revisión de 17:54 22 jun 2017
Coordinador (Discusión | contribuciones)
(Definición formal de límite)
Ir a siguiente diferencia →
Línea 44: Línea 44:
Los conceptos ''cerca'' y ''suficientemente cerca'' son matemáticamente poco precisos. Por esta razón, se da una definición formal de límite que precisa estos conceptos. Entonces se dice: Los conceptos ''cerca'' y ''suficientemente cerca'' son matemáticamente poco precisos. Por esta razón, se da una definición formal de límite que precisa estos conceptos. Entonces se dice:
-{{Caja_Amarilla|texto=+{{Caja_Amarilla|texto=Sea <math>f\;</math> una función con dominio <math>Dom_f\;</math> y sea <math>c \;</math> un punto de acumulación de <math>Dom_f\;</math>, diremos que:
 + 
El límite de una función <math>f(x)\;</math>, cuando <math>x~</math> tiende a <math>c~</math>, es <math>L ~</math>, si y sólo si, para todo <math> \varepsilon > 0 \; </math>, existe un <math> \delta > 0 \; </math>, tal que para todo número real <math>x~</math> del dominio de la función, si <math>0 < |x-c| < \delta \;</math>, entonces <math> |f(x)-L| < \varepsilon \;</math>. El límite de una función <math>f(x)\;</math>, cuando <math>x~</math> tiende a <math>c~</math>, es <math>L ~</math>, si y sólo si, para todo <math> \varepsilon > 0 \; </math>, existe un <math> \delta > 0 \; </math>, tal que para todo número real <math>x~</math> del dominio de la función, si <math>0 < |x-c| < \delta \;</math>, entonces <math> |f(x)-L| < \varepsilon \;</math>.
Es decir, Es decir,
-<center><math>\lim_{x\to c} \, \,f(x) = L</math><math>\iff \forall \varepsilon > 0 ,\,\,\, \exists \delta > 0 \, \ | \ \, \forall x \in \operatorname{Dom}(f), \,\,0<|x-c|<\delta \Rightarrow |f(x)-L|<\varepsilon+<center><math>\lim_{x\to c} \, \,f(x) = L</math><math>\iff \forall \varepsilon > 0 ,\,\,\, \exists \delta > 0 \, \ | \ \, \forall x \in \operatorname{Dom}_f, \,\,0<|x-c|<\delta \Rightarrow |f(x)-L|<\varepsilon
</math></center> </math></center>
{{p}} {{p}}

Revisión de 17:54 22 jun 2017

Tabla de contenidos

Límite de de una función en un punto

El concepto de límite es la base para poder abordar el concepto de continuidad y , más adelante, el de derivabilidad de una función. Es pués, de vital interés, tenerlo bien claro.

Definición informal de límite

De manera informal, diremos que una función f ~ tiene límite L~ en c~ , o que f ~ tiende a L ~ cuando x~ se acerca a c ~, si se puede hacer que f(x)~ esté tan cerca como queramos de L ~, haciendo que x~ esté suficientemente cerca de c~, pero sin llegar a c~.

Definición formal de límite

Los conceptos cerca y suficientemente cerca son matemáticamente poco precisos. Por esta razón, se da una definición formal de límite que precisa estos conceptos. Entonces se dice:

Sea f\; una función con dominio Dom_f\; y sea c \; un punto de acumulación de Dom_f\;, diremos que:

El límite de una función f(x)\;, cuando x~ tiende a c~, es L ~, si y sólo si, para todo \varepsilon > 0 \;, existe un \delta > 0 \;, tal que para todo número real x~ del dominio de la función, si 0 < |x-c| < \delta \;, entonces |f(x)-L| < \varepsilon \;.

Es decir,

\lim_{x\to c}  \, \,f(x) = L\iff \forall \varepsilon > 0 ,\,\,\, \exists \delta > 0 \, \ | \ \, \forall x \in \operatorname{Dom}_f, \,\,0<|x-c|<\delta \Rightarrow |f(x)-L|<\varepsilon


Nota: Para entender bien este concepto, recuérdese la definición de distancia entre dos puntos de la recta real, según la cual, d(x,c)=|x-c| \;.


Esta es una formulación estricta del concepto de límite de una función real en un punto de acumulación del dominio de la función y se debe al matemático francés Luis Cauchy. Decir que c~ es un punto de acumulación del dominio de la función equivale a decir que cualquier intevalo abierto de centro c~ contiene a puntos del dominio de la función distintos de c~, o dicho informalmente, que nos podemos acercar a c~ tanto como queramos mediante puntos del dominio distintos de c~.


Visualización de los parámetros utilizados en la definición de límite.
Aumentar
Visualización de los parámetros utilizados en la definición de límite.
Tomando valores arbitrarios de ε, podemos elegir un δ para cada uno de estos, de modo que f(x) y L se acerquen a medida que x se acerca a c.
Aumentar
Tomando valores arbitrarios de ε, podemos elegir un δ para cada uno de estos, de modo que f(x) y L se acerquen a medida que x se acerca a c.
ejercicio

Límite de una función en un punto


Demostrar que \lim_{x\to 2}(3x-5)=1 usando la definición formal de límite.

Funciones sin límite en un punto

ejercicio

Función sin límite


La función de Dirichlet, D:\mathbb{R}\to\mathbb{R} definida como:

D(x) = \begin{cases} c & \mathrm{si \ } x \in \mathbb{Q} \\ d & \mathrm{si \ } x \in \mathbb{I} \\ \end{cases}

tiene la peculiaridad de que, para cualquier valor a\; de su dominio, el \lim_{x \to a}f(x) no existe.

Límites laterales

Límites infinitos

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda