Correspondencia
De Wikipedia
(Diferencia entre revisiones)
Revisión de 10:11 23 may 2017 Coordinador (Discusión | contribuciones) (→Correspondencia entre conjuntos) ← Ir a diferencia anterior |
Revisión de 08:34 11 jul 2017 Coordinador (Discusión | contribuciones) (→Tipos de correspondencias. Aplicaciones) Ir a siguiente diferencia → |
||
Línea 62: | Línea 62: | ||
{{p}} | {{p}} | ||
{{Videotutoriales|titulo=Aplicación o función|enunciado= | {{Videotutoriales|titulo=Aplicación o función|enunciado= | ||
+ | {{Video_enlace_fonemato | ||
+ | |titulo1=Función o aplicación entre conjuntos | ||
+ | |duracion=6´25" | ||
+ | |sinopsis=Concepto de función o aplicación ente dos conjuntos. | ||
+ | |url1=https://www.youtube.com/watch?v=pjfKBJauEBE&list=PL25FE213AC8622E21&index=1 | ||
+ | }} | ||
{{Video_enlace_abel | {{Video_enlace_abel | ||
|titulo1=Función | |titulo1=Función | ||
Línea 101: | Línea 107: | ||
|celda3= [[Imagen:aplicacion_biyectiva.png|thumb|center|Aplicación biyectiva]] | |celda3= [[Imagen:aplicacion_biyectiva.png|thumb|center|Aplicación biyectiva]] | ||
}} | }} | ||
+ | |||
==Ejercicios== | ==Ejercicios== | ||
{{Videotutoriales|titulo=Funciones|enunciado= | {{Videotutoriales|titulo=Funciones|enunciado= |
Revisión de 08:34 11 jul 2017
Tabla de contenidos |
Correspondencia entre conjuntos
Una correspondencia ente dos conjuntos A y B es una ley o criterio que asocia elementos de A con elementos de B.
![]()
|
Sean los conjuntos X={1, 2, 3, 4} y Y={a, b, c, d}, una correspondencia, , entre X e Y podría ser aquella que asocia los elementos de X con los de Y siguiendo el siguiente diagrama de Venn:
- Fíjate que en el conjunto inicial, X, puede haber elementos,
, que no tengan asignado ningún elemento del conjunto final, Y.
- Igualmente, puede haber elementos de Y,
, a los que no se les ha asignado ningún elemento de X.
- En el conjunto inicial, X, puede haber elementos,
, a los que les correspondan más de un elemento de Y: f(2)=b; f(2)=d
- Igualmente, puede haber elementos de Y,
, a los que les corresponde más de un elmento de X: f(2)=d; f(4)=d

- Definición de correspondencia entre conjuntos.
- Conjunto inicial y conjunto final. Ejemplos.

El concepto de relación es sinónimo al de correspondencia.
Tipos de correspondencias. Aplicaciones
- Una correspondencia es unívoca si cada elemento inicial que tenga imagen solo tienen una imagen.
- Una correspondencia es biunívoca si cada elemento inicial que tenga imagen solo tienen una imagen, y cada elemento imagen solo tiene ese origen.
- Una aplicación o función es una correspondencia unívoca cuyo conjunto origen coincide con el conjunto inicial.

Concepto de función o aplicación ente dos conjuntos.

Concepto de función. Ejemplos.

Dominio y rango de una función. Ejemplos.

Cómo se evalua una función. Ejemplos.

Cómo se representa gráficamente una función. Ejemplos.
Tipos de aplicaciones
- Una aplicación es inyectiva si cada imagen se corresponde con un único origen.
- Una aplicación es sobreyectiva si el conjunto imagen coincide con el conjunto final.
- Una aplicación es biyectiva si es inyectiva y sobreyectiva simultaneamente.
Ejercicios

Problema sobre funciones.

Problema sobre funciones.

Problema sobre funciones.

Problema sobre funciones.

Problema sobre funciones.

Problema sobre funciones.