Plantilla:Ejercicios y problemas de divisibilidad
De Wikipedia
(Diferencia entre revisiones)
Revisión de 09:36 9 ago 2017
Problemas con múltiplos y divisores Descripción:
3 problemas en los que debes deducir si se trata de encontrar divisores, múltiplos, si hay que hallar el m.c.m. o el m.c.d. de varios números.
Ejercicios: Divisibilidad Descripción:
Ejercicios de repaso del tema de divisibilidad.
Autoevaluación: Divisibilidad Descripción:
Autoevaluación del tema de divisibilidad.
Autoevaluación: Divisibilidad Descripción:
Para saber más: Divisibilidad Descripción:
Amplia tus conocimientos sobre divisibilidad.
Control online: Divisibilidad Descripción:
Control para enviar a tu profesor por correo.
Ejercicios resueltos: Divisibilidad Descripción:
Ejercicios resueltos sobre divisibilidad.
Problemas resueltos: Divisibilidad Descripción:
Problemas resueltos sobre divisibilidad.
Problemas de m.c.d y m.c.m. (9'55") Sinopsis:
- Pedro va a visitar a sus abuelos cada 12 días, su hermano va cad 20 y su hermana cada 8. Si hoy coinciden los tres en casa de sus abuelos, ¿cuándo coincidirán nuevamente?
- Un zoo desea trasladar 90 gacelas y 64 leones en jaulas con el mismo número de animales y del mayor tamaño posible. ¿Cuántos animales irán en cada jaula?
Problemas: m.c.d y m.c.m.
1. Cierto planeta A tarda 150 días en completar una orbita completa alrededor de su sol. Otro planeta B del mismo sistema solar lo hace en 225 días. Si cierto día ambos planetas están alineados con el sol, ¿Cuánto tardarán en volver a estarlo?
Solución: 450 años.
2. Jaime hace una revisión rutinaria de su vehículo cada 15.000 km y hace otra revisión más a fondo cada 70.000 km ¿Cada cuántos kilómetros coinciden las dos revisiones?
Solución: 210.000 km.
3. Una empresa vinícola de Montilla tiene que embasar 1.650 litros de vino dulce y 3.600 litros de vino fino, en toneles iguales de la mayor capacidad posible. ¿De qué capacidad serán los toneles?
Solución: 150 l.
4. Se desea cubrir con azulejos cuadrados una pared de una cocina que mide 210 cm de ancho por 300 cm de alto. Si queremos que los azulejos sean lo más grande posible y que no haya que romper ninguno, ¿cuál debe ser la anchura del azulejo?
Solución: 30 cm.
5. En una peña hay entre 300 y 400 amigos. Para hacer una competición podemos formar grupos de 9, de 15 o de 21, sin que sobre o falte nadie. ¿Cuántos son en la peña?
Solución: 315
6. Si agrupamos las cajas de una almacén de 2 en 2, de 3 en 3, o de 4 en 4, siempre sobra 1. Calcula cuántos cajas hay sabiendo que no hay más de 20.
Solución: 13 |