Combinatoria

De Wikipedia

(Diferencia entre revisiones)
Revisión de 07:57 24 sep 2017
Coordinador (Discusión | contribuciones)
(Permutaciones con repetición)
← Ir a diferencia anterior
Revisión de 07:59 24 sep 2017
Coordinador (Discusión | contribuciones)
(Variaciones con repetición)
Ir a siguiente diferencia →
Línea 94: Línea 94:
==Variaciones con repetición== ==Variaciones con repetición==
-{{Caja_Amarilla|texto=Se llama '''variaciones con repetición''' de n elementos tomados de k en k (n ≥ k), y se representa <math>VR_n^k\;</math>, o bien <math>VR_{n,k}\;</math>, al número de grupos distintos de n elementos que se pueden formar a partir de m elementos dados, de forma que importa el orden y se pueden repetir los elementos.+{{Caja_Amarilla|texto=Se llama '''variaciones con repetición''' de n elementos tomados de k en k (n ≥ k), y se representa <math>VR_n^k\;</math>, o bien <math>VR_{n,k}\;</math>, a las distintas agrupaciones ordenadas de n elementos que se pueden formar a partir de m elementos dados en las que se pueden repetir los elementos.
}} }}
{{p}} {{p}}
-{{Teorema|titulo=Proposición|enunciado=Las variaciones con repetición de n elementos tomados de k en k (n ≥ k) se pueden calcular con la siguiente fórmula:+{{Teorema|titulo=Proposición|enunciado=El número de variaciones con repetición de n elementos tomados de k en k (n ≥ k) se pueden calcular con la siguiente fórmula:
<center><math>VR_{n,k}=n^k\;</math></center> <center><math>VR_{n,k}=n^k\;</math></center>

Revisión de 07:59 24 sep 2017

Tabla de contenidos

Permutaciones

Se llama permutaciones de n elementos, y se representa P_n\;, a las distintas agrupaciones de n elementos ordenadas obtenidas a partir de esos n elementos.

ejercicio

Proposición


El número de permutaciones de n elementos se pueden calcular con la siguiente fórmula:

P_n=n!\;

Permutaciones con repetición

Se llama permutaciones con repetición de n elementos, donde el primer elemento se repite "a" veces , el segundo "b" veces , el tercero "c" veces, ..., con n=a+b+c+..., y se representa PR_n^{a,b,c,...}\;, a las distintas agrupaciones ordenadas de n elementos formadas con esos n elementos, teniendo en cuenta que los elementos repetidos son indistinguibles.

ejercicio

Proposición


El número de permutaciones con repetición de n elementos, donde el primer elemento se repite "a" veces , el segundo "b" veces , el tercero "c" veces, ..., con n=a+b+c+..., se pueden calcular con la siguiente fórmula:

PR_n^{a,b,c,...}=\cfrac{n!}{a!b!c!...}\;

Variaciones con repetición

Se llama variaciones con repetición de n elementos tomados de k en k (n ≥ k), y se representa VR_n^k\;, o bien VR_{n,k}\;, a las distintas agrupaciones ordenadas de n elementos que se pueden formar a partir de m elementos dados en las que se pueden repetir los elementos.

ejercicio

Proposición


El número de variaciones con repetición de n elementos tomados de k en k (n ≥ k) se pueden calcular con la siguiente fórmula:

VR_{n,k}=n^k\;

Variaciones ordinarias

Se llama variaciones ordinarias (o sin repetición) de n elementos tomados de k en k (n ≥ k), y se representa V_n^k\;, o bien V_{n,k}\;, al número de grupos distintos de n elementos que se pueden formar a partir de m elementos dados, de forma que importa el orden y no se pueden repetir los elementos.

ejercicio

Proposición


Las variaciones ordinarias de n elementos tomados de k en k (n ≥ k) se pueden calcular con la siguiente fórmula:

V_{n,k}=\cfrac{n!}{(n-k)!}=n(n-1)(n-2)(n-3) \cdots (n-k+1)

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda