Plantilla:Criterios de divisibilidad
De Wikipedia
Revisión de 12:37 9 oct 2017 Coordinador (Discusión | contribuciones) ← Ir a diferencia anterior |
Revisión de 16:51 9 oct 2017 Coordinador (Discusión | contribuciones) Ir a siguiente diferencia → |
||
Línea 91: | Línea 91: | ||
<center><iframe> | <center><iframe> | ||
- | url=http://maralboran.org/web_ma/Anaya/Anaya07/1ESO_ALUMNO/datos/03/03.htm | + | url=http://web.educastur.princast.es/ies/pravia/carpetas/recursos/mates/anaya1/datos/03/03.htm |
width=800 | width=800 | ||
height=650 | height=650 | ||
Línea 97: | Línea 97: | ||
</iframe></center> | </iframe></center> | ||
- | |url1=http://maralboran.org/web_ma/Anaya/Anaya07/1ESO_ALUMNO/datos/03/03.htm | + | |url1=http://web.educastur.princast.es/ies/pravia/carpetas/recursos/mates/anaya1/datos/03/03.htm |
}} | }} | ||
{{AI_vitutor | {{AI_vitutor |
Revisión de 16:51 9 oct 2017
Los siguientes criterios nos permiten averiguar si un número es divisible por otro de una forma sencilla, sin necesidad de realizar una división.
Divisible por: | Criterio |
---|---|
2 | El número acaba en 0 ó cifra par. |
3 | La suma de sus cifras es un múltiplo de 3. |
4 | El número formado por las dos últimas cifras es múltiplo de 4. |
5 | La última cifra es 0 ó 5. |
6 | El número es divisible por 2 y por 3. |
7 | La diferencia entre el número sin la cifra de las unidades y el doble de la cifra de las unidades es 0 ó un múltiplo de 7. |
8 | El número formado por las tres últimas cifras es múltiplo de 8. |
9 | La suma de sus cifras es múltiplo de 9. |
10 | La última cifra es 0. |
11 | Se suman las cifras que forman el número de forma alternativa y se restan los resultados para ver si da un múltiplo de 11 (El cero también lo es) |
Los números que aparecen en verde se corresponden con aquellos cuyo criterio es un proceso que se puede usar de forma recursiva, es decir, si después de aplicarlo no sabemos si el número al que hemos llegado es múltiplo del número en cuestión, podemos aplicar nuevamente el criterio sobre ese resultado.
Criterios de divisibilidad por 2, 3 y 5. Ejemplos.
Criterios para averiguar si un número es divisible por 2, 3, 5, 10 u 11. Ejemplos.
Criterios para averiguar si un número es divisible por 2, 3, 5, 9 u 11. Ejemplos.
Criterios de divisibilidad por 2, 3, 4, 5 y 6. Ejemplos.
Criterios de divisibilidad por 7, 8, 9, 10 y 11. Ejemplos.
Criterios de divisibilidad por 2, 3, 4, 5, 6, 7, 8, 9, 10 y 11. Ejemplos.
Tutorial que explica los criterios de divisibilidad más básicos e importantes, es decir los "trucos" para saber, sin necesidad de dividir, si 2, 3, 5, 7, 11 y 10nson divisores de un número.
- 00:00 a 04:20: Definiciones básicas (divisor).
- 04:20 a 05:55: Criterio de divisibilidad del 2.
- 05:55 a 07:05: Criterio de divisibilidad del 5.
- 07:05 a 09:50: Criterio de divisibilidad de potencias de 10.
- 09:50 a 15:27: Criterio de divisibilidad del 3.
- 15:27 a 21:00: Criterio de divisibilidad del 11.
- 21:00 a 24:50: Criterio de divisibilidad del 7.
Tutorial que explica algunos criterios de divisibilidad más, es decir los "trucos" para saber, sin necesidad de dividir, si 6, 2n, 5n y 9 son divisores de un número.
- 00:00 a 02:20: Definiciones básicas (divisor).
- 02:20 a 05:15: Criterio de divisibilidad de las potencias de 2.
- 05:15 a 07:15: Criterio de divisibilidad de las potencias de 5.
- 07:15 a 10:30: Criterio de divisibilidad del 9.
- 10:30 a 15:46: Criterio de divisibilidad del 6 o producto de primos.
Criterios de divisibilidad por 2, 3, 4, 5, 6, 10, 11 y 12.
En esta escena podrás practicar el procedimiento de la criba de Eratóstenes para obtener números primos.
- Actividad en la que podrás comprobar si un número dado es múltiplo o no de 2, 3, 4, 5, 6, 8, 9, 10 y 11.
- Actividad en la que deberás separar los números por los que es divisible un número dado.
Ejercicios de autoevaluación sobre criterios de divisibilidad.